
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 2 – DECISIONS STATEMENTS AND FUNCTIONS

TOPIC 4 – Function Call

222/19

FUNCTION CALLS

 A function can be called by simply using the function name followed by a list of actual

parameters (or arguments), if any, enclosed in parentheses.

 Example:

main()

{

int y;

y = mul(10,5); /* Function call */

printf(“%d\n”, y);

}

 When the compiler encounters a function call, the control is transferred to the function mul().

 This function is then executed line by line as described and a value is returned when a return

statement is encountered.

 This value is assigned to y.

 This is illustrated below and shown as figure.

333/19

FUNCTION CALLS

444/19

FUNCTION CALLS

 The function call sends two integer values 10 and 5 to the function.

int mul(int x, int y)

 which are assigned to x and y respectively.

 The function computes the product x and y, assigns the result to the local variable p, and then

returns the value to 50 the main where it is assigned to y again.

 There are many different ways to call a function.

 Listed below are some of the ways the function mul can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

 Note that the sixth call uses its own call as its one of the parameters.

 When we use expressions, they should be evaluated to single values that can be passed as

actual parameters.

555/19

FUNCTION CALLS

 A function which returns a value can be used in expressions like any other variable.

 Each of the following statements is valid:

printf(“%d\n”, mul(p,q));

y = mul(p,q) / (p+q);

if (mul(m,n)>total) printf(“large”);

 However, a function cannot be used on the right side of an assignment statement.

 For instance, mul(a,b) = 15; is invalid.

 A function that does not return any value may not be used in expressions; but can be called in

to perform certain tasks specified in the function.

 The function printline() discussed belongs to this category.

 Such functions may be called in by simply stating their names as independent statements.

 Example:

main()

{

printline();

}

 Note the presence of a semicolon at the end.

666/19

FUNCTION DECLARATION

 Like variables, all functions in a C program must be declared, before they are

invoked.

A function declaration (also known as function prototype) consists of four parts.

Function type (return type).

Function name.

Parameter list.

Terminating semicolon.

 They are coded in the following format:

Function-type function-name (parameter list);

 This is very similar to the function header line except the terminating semicolon.

 For example, mul function defined in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

777/19

FUNCTION DECLARATION

 Points to Note

 1. The parameter list must be separated by commas.

 2. The parameter names do not need to be the same in the prototype declaration and

the function definition.

 3. The types must match the types of parameters in the function definition, in

number and order.

 4. Use of parameter names in the declaration is optional.

 5. If the function has no formal parameters, the list is written as (void).

 6. The return type is optional, when the function returns int type data.

 7. The retype must be void if no value is returned.

 8. When the declared types do not match with the types in the function definition,

compiler will produce an error.

888/19

FUNCTION DECLARATION

 A prototype declaration may be placed in two places in a program.

 1. Above all the functions (including main).

 2. Inside a function definition.

 When we place the declaration above all the functions (in the global declaration section), the

prototype is referred to as a global prototype.

 Such declarations are available for all the functions in the program.

 When we place it in a function definition (in the local declaration section), the prototype is

called a local prototype.

 Such declarations are primarily used by the functions containing them.

 The place of declaration of a function defines a region in a program in which the function may

be used by other functions.

 This region is known as the scope of the function.

 It is a good programming style to declare prototypes in the global declaration section before

main.

 It adds flexibility, provides an excellent quick reference to the functions used in the program,

and enhances documentation.

999/19

FUNCTION DECLARATION

 Prototypes: Yes or No

 Prototype declarations are not essential.

 If a function has not been declared before it is used, C will assume that its details

available at the time of linking.

 Since the prototype is not available, C will assume that the return type is an integer

and that the types of parameters match the formal definitions.

 If these assumptions are wrong, the linker will fail and we will have to change the

program.

 The moral is that we must always include prototype declarations, preferably in

global declaration section.

101010/19

FUNCTION DECLARATION

 Parameters Everywhere!

 Parameters (also known as arguments) are used in following three places:

1. in declaration (prototypes),

2. in function call, and

3. in function definition.

 The parameters used in prototypes and function definitions are called formal

parameters and those used in function calls are called actual parameters.

Actual parameters used in a calling statement may be simple constants, variables,

or expressions.

 The formal and actual parameters must match exactly in type, order and number.

 Their names however, do not need to match.

111111/19

CATEGORY OF FUNCTIONS

A function, depending on whether arguments are present or not and whether a value

is returned or not, may belong to one of the following categories:

 Category 1: Functions with no arguments and no return values.

 Category 2: Functions with arguments and no return values.

 Category 3: Functions with arguments and one return value.

 Category 4: Functions with no arguments but return a value.

 Category 5: Functions that return multiple values.

121212/19

No Arguments and No Return Values

When a function has no arguments, it does not receive any data from the calling

function.

 Similarly, when it does not return a value, the calling function does not receive any

data from the called function.

 In effect, there is no data transfer between the calling function and the called

function.

 This is depicted in Fig.

 The dotted lines indicate that there is only a transfer of control but not data.

131313/19

Arguments But No Return Values

 The actual and formal arguments should match in number, type, and order.

 The values of actual arguments are assigned to the formal arguments on a one to

one basis, starting with the first argument as shown in Fig

141414/19

Arguments with Return Values

151515/19

No Arguments But Returns a Value

 There could be occasions where we may need to design functions that may not take any

arguments but returns a value to the calling function.

 A typical example is the getchar function declared in the header file <stdio.h>.

 We have used this function earlier in a number of places.

 The getchar function has no parameters but it returns an integer type data that represents a

character.

 We can design similar functions and use in our programs.

 Example

int get_number(void);

main

{

int m = get_number();

printf(“%d”,m);

}

int get_number(void)

{

int number;

scanf(“%d”, &number);

return(number);

}

161616/19

NESTING OF FUNCTIONS

 C permits nesting of

functions freely.

 main can call function1,

which calls function2,

which calls function3,

………. and so on.

 There is in principle no

limit as to how deeply

functions can be nested.

171717/19

RECURSION

 When a called function in turn calls another function a process of ‘chaining’ occurs.

 Recursion is a special case of this process, where a function calls itself.

 A very simple example of recursion is presented below:

main()

{

printf(“This is an example of recursion\n”)

main();

}

 When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

 Execution is terminated abruptly; otherwise the execution will continue indefinitely.

181818/19

RECURSION

 Another useful example of recursion is the evaluation of factorials of a given number.

 The factorial of a number n is expressed as a series of repetitive multiplications as shown

below:

factorial of n = n(n–1)(n–2).........1.

 For example,

factorial of 4 = 4 3 2 1 = 24

 A function to evaluate factorial of n is as follows:

191919/19

RECURSION

 Let us see how the recursion works.

 Assume n = 3.

 Since the value of n is not 1, the statement

fact = n * factorial(n–1);

 will be executed with n = 3.

 That is, fact = 3 * factorial(2); will be evaluated.

 The expression on the right-hand side includes a call to factorial with n = 2.

 This call will return the following value:

2 * factorial(1)

 Once again, factorial is called with n = 1.

 This time, the function returns 1.

 The sequence of operations can be summarized as follows:

 fact = 3 * factorial(2)

 = 3 * 2 * factorial(1)

 = 3 * 2 * 1

 = 6

