ﬁ—

SNS COLLEGE OF TECHNOLOGY L

Coimbatore-35
An Autonomous Institution

LLTTITITIONS

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT 2 - DECISIONS STATEMENTS AND FUNCTIONS

TOPIC 4 - Function Call

FUNCTION CALLS

parameters (or arguments), If any, enclosed in parentheses.
» Example:
main()
{ -
Inty;
y = mul(10,5); /* Function call */
printf(“%d\n”, y);
¥
» When the compiler encounters a function call, the control is transferred to the function mul().
» This function is then executed line by line as described and a value Is returned when a return
statement Is encountered.
» This value Is assigned to .
» This is Hllustrated below and shown as figure.

2./19

FUNCTION CALLS

FITrorions

main ()

{

int y;
— y = mul(10,5); /* call*/

N\
int mul(int x,int y)=
int p; /*1ocal variable*/

P=x*y; [*x=10,y=5%
return (p);

|

3/19

FUNCTION CALLS

»Int mul(int X, Inty)
» Which are assigned to x and y respectively.
» The function computes the product x and y, assigns the result to the local variable p, and then
returns the value to 50 the main where It Is assigned to y again.
» There are many different ways to call a function.
» Listed below are some of the ways the function mul can be invoked.
mul (10, 5)
mul (m, 5)
mul (10, n)
mul (m, n)
mul (m + 5, 10)
mul (10, mul(m,n))
mul (expressionl, expression2)
» Note that the sixth call uses its own call as its one of the parameters.
» When we use expressions, they should be evaluated to single values that can be passed as
actual parameters.

4,/19

FUNCTION CALLS

G]]) i i i
2% A function which returns a value can be used in expressions like any other variable.

» Each of the following statements is valid:
printf(“%d\n”, mul(p,q));
y =mul(p,q) / (p+0);
1f (mul(m,n)>total) printf(*“large”);
» However, a function cannot be used on the right side of an assignment statement.
» For instance, mul(a,b) = 15; is invalid.
» A function that does not return any value may not be used in expressions; but can be called In
to perform certain tasks specified in the function.
» The function printline() discussed belongs to this category.
» Such functions may be called in by simply stating their names as independent statements.
» Example:
main()

{
printline();

}

» Note the presence of a semicolon at the end.

LLTTTTITIONS

5/19

FUNCTION DECLARATION

Like variables, all functions in a C program must be declared, before they are
Invoked.
» A function declaration (also known as function prototype) consists of four parts.
» Function type (return type).
» Function name.
»Parameter list.
» Terminating semicolon.
» They are coded In the following format:
» Function-type function-name (parameter list);
» This Is very similar to the function header line except the terminating semicolon.
» For example, mul function defined in the previous section will be declared as:
»Int mul (int m, Int n); /* Function prototype */

LLTTTTITIONS

e
— :

6/19

U5 Points to Note

FUNCTION DECLARATION

LLTTTTITION S

» 1. The para
» 2. The para

meter list must be separated by commas.

meter names do not need to be the same In the prototype declaration and

the function definition.

» 3. The types must match the types of parameters in the function definition, in
number and order.

» 4. Use of parameter names In the declaration iIs optional.

» 5. If the function has no formal parameters, the list is written as (void).

» 6. The return type Is optional, when the function returns int type data.

» 1. The retype must be void If no value Is returned.

» 8. When the declared types do not match with the types in the function definition,
compiler will produce an error.

7./19

FUNCTION DECLARATION

» 1. Above all the functions (including main).

» 2. Inside a function definition.

» When we place the declaration above all the functions (in the global declaration section), the
prototype Is referred to as a global prototype.

» Such declarations are available for all the functions in the program.

» When we place it in a function definition (in the local declaration section), the prototype Is
called a local prototype.

» Such declarations are primarily used by the functions containing them.

» The place of declaration of a function defines a region in a program in which the function may
be used by other functions.

» This region is known as the scope of the function.

» It is a good programming style to declare prototypes in the global declaration section before
main.

> |t adds flexibility, provides an excellent quick reference to the functions used in the program,
and enhances documentation.

8/19

FUNCTION DECLARATION

Prototypes: Yes or No

» Prototype declarations are not essential.

» If a function has not been declared before it is used, C will assume that its details
avallable at the time of linking.

» Since the prototype Is not available, C will assume that the return type Is an integer
and that the types of parameters match the formal definitions.

» |f these assumptions are wrong, the linker will fail and we will have to change the
program.

» The moral Is that we must always include prototype declarations, preferably In

global declaration section.

fj{ff‘/y LLTTITITIONS

9/19

3 FUNCTION DECLARATION

2% Parameters Everywherel!
» Parameters (also known as arguments) are used in following three places:
» 1. In declaration (prototypes),
»2. In function call, and
» 3. In function definition.
» The parameters used In prototypes and function definitions are called formal
parameters and those used In function calls are called actual parameters.
» Actual parameters used in a calling statement may be simple constants, variables,
Or expressions.
» The formal and actual parameters must match exactly in type, order and number.
» Their names however, do not need to match.

LLTTTTITION S

10/19

» Category 1: FL
» Category 2: FL
» Category 3: FL
» Category 4: FL

» Category 5: FL

nctio
nctio
nctio
nctio

NCtlo

CATEGORY OF FUNCTIONS

NS Wit
NS Wit
NS Wit
NS Wit

LLTTITITION S

T > A function, depending on whether arguments are present or not and whether a value
IS returned or not, may belong to one of the following categories:

N No arguments and no return values.
n arguments and no return values.
n arguments and one return value.

N No arguments but return a value.

ns that return multiple values.

11/19

No Arguments and No Return Values

LLTTTTITION S

> > \When a function has no arguments, it does not receive any data from the calllng
function.

» Similarly, when It does not return a value, the calling function does not receive any
data from the called function.

» In effect, there 1s no data transfer between the calling function and the called
function.

» This Is depicted In Fig.

» The dotted lines indicate that there is only a transfer of control but not data.

control

function1() 4 4 function2 ()
' No input I

- .
| B - - |_

function2 ()
. No output

control

Fig. 11.3 No data communication between functions 12/19

Arguments But No Return Values

%% The actual and formal arguments should match in number, type, and order.

LLTTITITIONS

» The values of actual arguments are assigned to the formal arguments on a one to
one basis, starting with the first argument as shown in Fin

function1 ()

..................

..................

..................

function 2 (f)

..................

Values
of arguments
-

..................
..................

..................

| No return value

..................

One-way data communication

Function

call

Called
function—

actual arguments
S

function1l (al, a2, a3, ...

functionl

|

(F, T2, 3y ;

, am)

Arguments matching between the function call and the called function

13/19

Arguments with Return Values

function1() | Values
of arguments

= -

~»

FITrorions

Function result

-

function 2 (f)

000000000000000000
oooooooooooooooooo

return (e)

}

Two-way data communication between functions

14/19

No Arguments But Returns a Value

arguments but returns a value to the calling function.
» Atypical example is the getchar function declared in the header file <stdio.h>.
» We have used this function earlier in a number of places.
» The getchar function has no parameters but it returns an integer type data that represents a

character. | |
> We can design similar functions and use in our programs. Int get_number(void);
> Example main

1

Int m = get_number();
printf(“%d”,m);
¥

Int get_number(void)
{
Int number;
scanf(“%d”, &number);
return(number);

}

15/19

NESTING OF FUNCTIONS

‘j‘h‘i' C permitS nesting Of fioat ratio (int x, int y, int z);
] int difference (int x, int y);
functions freely. main()

» malin can call functionl, {
which calls function2,

int a, b, c;
scanf("%d %d %d", &a, &b, &c);

which calls function3, printf("%f \n®, ratio(a,b,c));
.......... and so on. :
> Thereisin princip]e no fioat ratio(int x, int y, int 2)
.. {
limit as to how deeply St{atFterencaly, 2))
functions can be nested.] return(x/(y-2));
eise

return(0.0);

)
int difference(int p, int q)

{
if(p != q)
return (1);
else
return(0):

16/19

RECURSION

> When a called function in turn calls another function a process of ‘chaining’ occurs.
» Recursion is a special case of this process, where a function calls itself.
» Avery simple example of recursion Is presented below:

main()

{

printf(“This is an example of recursion\n”)

main();

h
» When executed, this program will produce an output something like this:

This Is an example of recursion

nis Is an example of recursion
nis Is an example of recursion
NIS IS an ex
» Execution is terminated abruptly; otherwise the execution will continue indefinitely.

17/19

RECURSION

» The factorial of a number n Is expressed as a series of repetitive multiplications as shown
below:
factorial of n = n(n-1)(n-2)......... 1.
» For example,
factorial of4=4321=24
» A function to evaluate factorial of n Is as follows:

factorial (int n)
{
int fact;
if (n==1)
return(1);
else
fact = n*factorial(n-1);
return(fact);

18/19

RECURSION

LLTTTTITIONS

» Assume n = 3.

» Since the value of n is not 1, the statement
»fact = n * factorial(n-1);

» Will be executed with n = 3.

» That is, fact = 3 * factorial(2); will be evaluated.

» The expression on the right-hand side includes a call to factorial with n = 2.

» This call will return the following value:

factorial(int n)

»2 * factorial(1) {
» Once again, factorial is called with n = 1. int Fact:
» This time, the function returns 1. if (n==1)
» The sequence of operations can be summarized as follows: return(1);
» fact = 3 * factorial(2) else
> =3 *92 % factoria|(]_) fact = n*factorial (n-1);
> =3*%2%1 return(fact);
> =6 !

19/19

