An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY
19ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM
UNIT 1 - INTRODUCTION TO C
TOPIC 2 - Algorithm

ALGORITHM

$>$ It is defined as a sequence of instructions that describe a method for solving a problem.
$>$ In other words it is a step by step procedure for solving a problem.
$>$ Should be written in simple English
$>$ Each and every instruction should be precise and unambiguous.
$>$ Instructions in an algorithm should not be repeated infinitely.
$>$ Algorithm should conclude after a finite number of steps.
$>$ Should have an end point
$>$ Derived results should be obtained only after the algorithm terminates.

Problem: Add two numbers

```
Step 1: Start
Step 2: Read A, B
Step 3: }C=A+
Step 4: Print C
Step 5: Stop
```


Example: Write an algorithm to add two numbers

- Start
- Step 1: Get number1
- Step 2: Get number2
- Step 3: Sum ↔--- number1 + numbert2
- Step 4: Display/Print sum
- Stop

BUILDING BLOCKS OF ALGORITHM

$>$ The following are the primary factors that are often used to judge the quality of the algorithms.
$>$ Time - To execute a program, the computer system takes some amount of time. The lesser is the time required, the better is the algorithm.
$>$ Memory - To execute a program, computer system takes some amount of memory space. The lesser is the memory required, the better is the algorithm.
$>$ Accuracy - Multiple algorithms may provide suitable or correct solutions to a given problem, some of these may provide more accurate results than others, and such algorithms may be suitable

Example
Write an algorithm to print „Good Morning"
Step 1: Start
Step 2: Print "Good Morning"
Step 3: Stop

BUILDING BLOCKS OF ALGORITHM

$>$ As algorithm is a part of the blue-print or plan for the computer program.
$>$ An algorithm is constructed using following blocks.

- Statements
- States
- Control flow
- Function

STATEMENTS

Statements are simple sentences written in algorithm for specific purpose.
Statements may consists of assignment statements, Problem: Add two numbers input/output statements, comment statements

- Statements might include some of the following actions
- input data-information given to the program
- process data-perform operation on a given input
- output data - processed result
- Example:
$>$. Read the value of 'a' //This is input statement
$>$. Calculate $\mathrm{c}=\mathrm{a}+\mathrm{b} / /$ This is assignment statement
$>$. Print the value of $\mathrm{c} / /$ This is output statement
$>$. Comment statements are given after // symbol, which is used to tell the purpose of the line.

```
```

Step 1: Start

```
```

Step 1: Start
Step 2: Read A, B
Step 2: Read A, B
Step 3: C=A+B
Step 3: C=A+B
Step 4: Print C
Step 4: Print C
Step 5: Stop

```
```

Step 5: Stop

```
```


STATES

$>$ An algorithm is deterministic automation for accomplishing a goal which, given an initial state, will terminate in a defined end-state.
$>$ In other words, Transition from one process to another process under specified condition with in a time is called state.
$>$ An algorithm will definitely have start state and end state

Problem: Add two numbers

```
Step 1: Start
Step 2: Read A, B
Step 3: }\quad\textrm{C}=\textrm{A}+\textrm{B
Step 4: Print C
Step 5: Stop
```


CONTROL FLOW

$>$ Control flow which is also stated as flow of control, determines what section of code is to run in program at a given time.
$>$ There are three types of flows, they are

- 1. Sequential control flow
- 2. Selection or Conditional control flow
-3. Looping, iteration or repetition control flow

SEQUENTIAL CONTROL FLOW

$>$ Sequential control structure is used to perform the action one after another.
$>$ Only one step is executed once.
$>$ The logic is top to bottom approach.
$>$ Example
Description: To find the sum of two numbers.
STEP 1. Start
STEP 2. Read the value of ' a '
STEP 3. Read the value of 'b'
STEP 4. Calculate sum=a+b
STEP 5. Print the sum of two number
STEP 6. Stop

$>$ Selectiso called as decision structure.

Basic structure:

IFCONDITION is TRUE then
perform some action
ELSE IF CONDITION is FALSE then
perform some action

Example
//Description: finding the greater number
STEP 1. Start
STEP 2. Read a
STEP 3. Read b
STEP 4. If $a>b$ then
STEP 4.1. Print a is greater else
STEP 4.2. Print b is greater
STEP 5. Stop

REPETITION CONTROL FLOW

$>$ Repetition control flow means that one or more steps are performed repeatedly until some condition is reached.
$>$ This logic is used for producing "loops" in program logic when one or more instructions may need to be executed several times depending on condition.

Basic Structure:
Repeat untilCONDITIONis true
Statements

Example

//Description: to print the values from 1 to n
STEP 1. Start
STEP 2. Read the value of ' n '
STEP 3. Initialize i as 1
STEP 4. Repeat step 4.1 until $\mathrm{i}<\mathrm{n}$ STEP 4.1. Print i
STEP 5. Stop

FUNCTION

$>$ A function is a block of organized, reusable code that is used to perform a single, related action.
$>$ Function is also named as methods, sub-routines.For complex problems, the problem is been divided into smaller and simpler tasks during algorithm design

Benefits of Using Functions

- Reduction in line of code
- Code reuse
- Better readability
- Information hiding
- Easy to debug and test
- Improved maintainability

Basic Syntax

function_name(parameters)
function statements
end function

Algorithm for addition of two numbers using function Main function()
Step 1: Start
Step 2: Call the function add()
Step 3: Stop
sub function add()
Step 1: Function start
Step 2: Get a,bValues
Step 3: add c=a+b
Step 4: Print c
Step 5: Stop

Problem 1:

Find the area of a Circle of radius r.
Inputs to the algorithm:
Radius r of the Circle.
Expected output:
Area of the Circle
Algorithm:
Step 1: Start
Step2: Read input the Radius r of the Circle
Step3: Area $=$ PI ${ }^{*}{ }^{*}$ r $/ /$ calculation of area
Step4: Print Area
Step 5: Stop

Problem2:

Write an algorithm to read two numbers and find their sum.
Inputs to the algorithm:
First num1.
Second num2.
Expected output:
Sum of the two numbers.
Algorithm:
Step 1: Start
Step 2: Readlinput the first num1.
Step 3: Readlinput the second num2.
Step 4: Sum = num1+num2 // calculation of sum
Step 5: Print Sum
Step 6: Stop

EXAMPLES

Problem 4:

Find the largest number between A and B

Inputs to the algorithm:

A, B

Expected output:
Largest A or B
Algorithm:
Step 1: Start
Step 2: Read A, B
Step 3: If A is less than B, then
Big=B
Small=A
Print A is largest
Else
$\mathrm{Big}=\mathrm{A}$
Small $=$ B
Step 4: Write (Display) BIG, SMALL
Step 5: Stop

EXAMPLES

Problem 5:

To determine a student's average grade and indicate whether successful or fail.

Step 1: Start
Step 2: Input mid-term and final
Step 3: average $=($ mid-term + final $) / 2$
Step 4: if (average < 60) then
Print "FAIL"
else
Print "SUCCESS"
Step 5: Stop

Problem 6:

A algorithm to find the largest value of any three numbers.
Step 1: Start
Step 2: Read/input A,B and C
Step 3: If $(\mathrm{A}>=\mathrm{B})$ and $(\mathrm{A}>=\mathrm{C})$ then $\mathrm{Max}=\mathrm{A}$
Step 4: If $(B>=A)$ and $(B>=C)$ then $M a x=B$
Step 5:If $(C>=A)$ and $(C>=B)$ then $M a x=C$
Step 6: Print Max
Step 7: End

