

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 1 – INTRODUCTION TO C

TOPIC 8 – Operators & Expressions

1

2 2/26

C OPERATORS & EXPRESSIONS

An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations.

 Operators are used in programs to manipulate data and variables.

 They usually form a part of the mathematical or logical expressions.

 An expression is a sequence of ‘operands’ and ‘operators’ that reduces to a single value.

 For example, 10 + 15 is an expression whose value is 25.



 33/26

C OPERATOR CLASSIFICATION

C operators can be classified into a number of categories. They include:

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators



2 4/26

1. ARITHMETIC OPERATORS

 C provides all the basic arithmetic operators.

 The operators +, –, *, / all work the same way as they do in other languages.

 These can operate on any built-in data type allowed in C.

 55/26

INTEGER ARITHMETIC

 When both the operands in a single arithmetic expression such as a+b are integers, the

expression is called an integer expression, and the ‘operation’ is called integer arithmetic.

 Integer arithmetic always yields an integer value.

 Example, if a and b are integers, then for a = 14 and b = 4 we have the following results:

• a – b = 10

• a + b = 18

• a * b = 56

• a / b = 3 (decimal part truncated)

• a % b = 2 (remainder of division)

666 6/26

REAL ARITHMETIC

An arithmetic operation involving only real operands is called real arithmetic.

 A real operand may assume values either in decimal or exponential notation.

 Since floating point values are rounded to the number of significant digits permissible, the

final value is an approximation of the correct result.

 Example, If x, y, and z are floats, then we will have:

• x = 6.0/7.0 = 0.857143

• y = 1.0/3.0 = 0.333333

• z = –2.0/3.0 = –0.666667

 The operator % cannot be used with real operands.



7777 7/26

MIXED-MODE ARITHMETIC

When one of the operands is ‘real’ and the other is ‘integer’, the expression is called a mixed-

mode arithmetic expression.

 If either operand is of the real type, then only the real operation is performed and the result is

always a real number.

Operation Result Example

Int/int Int 2/5 = 0

Real/int Real 5.0/2 = 2.5

Int/real Real 5/2.0 = 2.5

Real/real real 5.0/2.0 = 2.5



C PROGRAM FOR ARITHMETIC OPERATIONS

999999 9/26

1. RELATIONAL OPERATORS

 We often compare two quantities and depending on their relation, take certain decisions.

 For example, we may compare the age of two persons, or the price of two items, and so on.

 These comparisons can be done with the help of relational operators.

 The symbol ‘<‘, meaning ‘Less Than’ and ‘>’, meaning ‘Greater Than’.

 An expression such as a < b or 1 < 20 containing a relational operator is termed as a relational

expression.

 The value of a relational expression is either one or zero.

 Value = 1, if the specified relation is True

 Value = 0, if the specified relation is False

 For example

• 10 < 20 is true  Value = 1

• 20 < 10 is false  Value = 0

 Relational expressions are used in decision statements such as if and while to decide the

course of action of a running program.

1010
1010
101
0

 10/26

2. RELATIONAL OPERATORS

ae-1 relational operator ae-2

» Example, 10 < 20



3. LOGICAL OPERATORS

C has the following three logical operators.

1. && meaning logical AND

2. || meaning logical OR

3. ! meaning logical NOT

 The logical operators && and || are used when we want to test more than one condition and make decisions.

 Example : a > b && x == 10

 An expression of this kind, which combines two or more relational expressions, is termed as a logical

 expression or a compound relational expression.

 Like the simple relational expressions, a logical expression also yields a value of one or zero, according to

the truth table shown.

 The logical expression given above is true only if a > b is true and x == 10 is true. If either (or both) of them

are false, the expression is false.



1212
1212
1212
121

 12/26

4. ASSIGNMENT OPERATORS

 Assignment operators are used to assign the result of an expression to a variable.

 The usual assignment operator is, ‘=’.

 In addition, C has a set of ‘shorthand ’ assignment operators of the form

v op= exp;

 Where v is a variable, exp is an expression and op is a C binary arithmetic operator.

 The operator op= is known as the shorthand assignment operator.

 The assignment statement v op= exp; is equivalent to

v = v op (exp);

 Example: x += y+1;

 This is same as the statement x = x + (y+1);

 The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’.

 For y = 2, the above statement becomes x += 3; and when this statement is executed, 3 is added to x.

 If the old value of x is, say 5, then the new value of x is 8.

1313
1313
1313
131

4. ASSIGNMENT OPERATORS

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

 13/26



5. INCREMENT AND DECREMENT OPERATORS

 C allows two very useful operators not generally found in other languages.

 These are the increment and decrement operators:

++ and — –

 The operator ++ adds 1 to the operand, while – – subtracts 1.

 Both are unary operators and takes the following form:

++m; or m++;

– —m; or m– —;

 ++m; is equivalent to m = m+1; (or m += 1;)

 – —m; is equivalent to m = m–1; (or m –= 1;)

 We use the increment and decrement statements in for and while loops extensively.

1414/26

 1515/26

5. INCREMENT AND DECREMENT OPERATORS

While ++m and m++ mean the same thing when they form statements independently, they behave

differently when they are used in expressions on the right-hand side of an assignment statement.

 Consider the following:

m = 5;

y = ++m;

 In this case, the value of y and m would be 6.

 Suppose, if we rewrite the above statements as

m = 5;

y = m++;

 then, the value of y would be 5 and m would be 6.

 A prefix operator first adds 1 to the operand and then the result is assigned to the variable on left.

 On the other hand, a postfix operator first assigns the value to the variable on left and then increments the

operand.



• M++;- Post increment, first do the operation and then increment

• ++m;- Pre increment, first increment and then do the operation

• --m; - Pre decrement, first decrement and then do the operation

• M--; - Post decrement, first do the operation and then increment

1616
1616
1616
1616

 16/26

6. CONDITIONAL OPERATOR

 A ternary operator pair “? :” is available in C to construct conditional expressions of the form

exp1 ? exp2 : exp3

 where exp1, exp2, and exp3 are expressions.

 The operator ? : works as follows:

exp1 is evaluated first. If it is nonzero (true), then the expression exp2 is evaluated and becomes the

value of the expression.

If exp1 is false, exp3 is evaluated and its value becomes the value of the expression.

Note that only one of the expressions (either exp2 or exp3) is evaluated.

 For example, consider the following statements:

a = 10;

b = 15;

x = (a > b) ? a : b;

 In this example, x will be assigned the value of b.

 This can be achieved using the if..else statements as follows:

if (a > b)

x = a;

else

x = b;

 1717/26

7. BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipulation of data at

bit level.

 These operators are used for testing the bits, or shifting them right or left. Bitwise operators may not be

applied to float or double.



1818
1818
1818
1818

 18/26

8. SPECIAL OPERATORS

C supports some special operators of interest such as

 Comma operator (,)

 Sizeof operator (sizeof)

 Pointer operators (& and *)

 Member selection operators (. and –>).

 The Comma Operator

 The comma operator can be used to link the related expressions together.

 A comma-linked list of expressions are evaluated left to right and the value of right-most expression is

the value of the combined expression.

 For example, the statement

value = (x = 10, y = 5, x+y);

 first assigns the value 10 to x

 then assigns 5 to y

 and finally assigns 15 (i.e. 10 + 5) to value.

 Since comma operator has the lowest precedence of all operators, the parentheses are necessary.



1919
1919
1919
1919

The sizeof Operator

8. SPECIAL OPERATORS

 The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes the

operand occupies.

 The operand may be a variable, a constant or a data type qualifier.

 Examples

m = sizeof (sum);

n = sizeof (long int);

 The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes are

not known to the programmer.

 It is also used to allocate memory space dynamically to variables during execution of a program.

#include<stdio.h>

#include<conio.h>

Void main()

{

OUTPUT:

size of variable a is : 2

Int a;

Printf(“size of variable a is : %d”,sizeof(a));

}

19/26



2020
2020
2020
2020

 20/26

8. SPECIAL OPERATORS

Pointer Operator

 &

 This symbol specifies the address of the variable

 *

 This symbol specifies the value of the variable.

 Member Selection Operator

 . and - - >

 Used to access the elements from a structure.



ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as per the

syntax of the language.

Variable = Expression;

 Whenever this statement is encountered, the expression is evaluated first and the result then replaces the

previous value of the variable on the left-hand side.

 All variables used in the expression must be assigned values before evaluation is attempted.

 2121/26



2222
2222
2222
2222

PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the rules of

precedence of operators.

 There are two distinct priority levels of arithmetic operators in C:

High priority * / %

Low priority + –

 The basic evaluation procedure includes ‘two’ left-to-right passes through the expression.

 During the first pass, the high priority operators (if any) are applied as they are encountered.

 During the second pass, the low priority operators (if any) are applied as they are encountered.

 Consider the following evaluation.

x = a–b/3 + c*2–1

 When a = 9, b = 12, and c = 3, the statement becomes

x = 9–12/3 + 3*2–1

 and is evaluated as follows

 First pass:

Step1: x = 9– 4+3*2–1

Step2: x = 9– 4+6–1

 Second pass

Step3: x = 5+6–1

Step4: x = 11–1

Step5: x = 10

22/26



2323
2323
2323
2323

PRECEDENCE OF ARITHMETIC OPERATORS

The order of evaluation can be changed by introducing parentheses into an expression.

 Consider the same expression with parentheses as shown below:

9–12/(3+3)*(2–1)

 Whenever parentheses are used, the expressions within parentheses assume highest priority.

 If two or more sets of parentheses appear one after another as shown above, the expression contained in

the left-most set is evaluated first and the right-most in the last.

 Given below are the new steps.

 First pass

• Step1: 9-12/6 * (2-1)

• Step2: 9-12/6 * 1

 Second pass

• Step3: 9-2 * 1

• Step4: 9-2

 Third pass

• Step5: 7

 Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward from the

innermost set of parentheses.

 23/26



RULES FOR EVALUATION OF EXPRESSION

 First, parenthesized sub expression from left to right are evaluated.

 If parentheses are nested, the evaluation begins with the innermost sub-expression

 The precedence rule is applied in determining the order of application of operators in evaluating sub-

expressions.

 The associativity rule is applied when two or more operators of the same precedence level appear in a

sub-expression.

 Arithmetic expressions are evaluated from left to right using the rules of precedence.

 When parentheses are used, the expressions within parentheses assume highest priority.

OPERATOR PRECEDENCE AND ASSOCIATIVITY

 Each operator, in C has a precedence associated with it.

 This precedence is used to determine how an expression involving more than one operator is evaluated.

 There are distinct levels of precedence and an operator may belong to one of these levels.

 The operators at the higher level of precedence are evaluated first.

 The operators of the same precedence are evaluated either from ‘left to right’ or from ‘right to left’,

depending on the level.

 This is known as the associativity property of an operator.

 Table below provides a complete list of operators, their precedence levels, and their rules of association.

 The groups are listed in the order of decreasing precedence.

 Rank 1 indicates the highest precedence level and 15 the lowest.

 Rules of Precedence and Associativity

• Precedence rules decide the order in which different operators are applied

• Associativity rule decides the order in which multiple occurrences of the same level operator are

applied.

 2525/26

2626
2626
2626
2626

OPERATOR PRECEDENCE AND ASSOCIATIVITY

26/26

	C OPERATORS & EXPRESSIONS
	C OPERATOR CLASSIFICATION
	1. ARITHMETIC OPERATORS
	INTEGER ARITHMETIC
	REAL ARITHMETIC
	MIXED-MODE ARITHMETIC
	C PROGRAM FOR ARITHMETIC OPERATIONS
	1. RELATIONAL OPERATORS
	2. RELATIONAL OPERATORS
	3. LOGICAL OPERATORS
	4. ASSIGNMENT OPERATORS
	4. ASSIGNMENT OPERATORS (1)
	5. INCREMENT AND DECREMENT OPERATORS
	5. INCREMENT AND DECREMENT OPERATORS (1)
	6. CONDITIONAL OPERATOR
	7. BITWISE OPERATORS
	8. SPECIAL OPERATORS
	 The Comma Operator

	8. SPECIAL OPERATORS
	8. SPECIAL OPERATORS (1)
	Pointer Operator
	 Member Selection Operator

	ARITHMETIC EXPRESSIONS
	PRECEDENCE OF ARITHMETIC OPERATORS
	PRECEDENCE OF ARITHMETIC OPERATORS (1)
	RULES FOR EVALUATION OF EXPRESSION
	OPERATOR PRECEDENCE AND ASSOCIATIVITY
	OPERATOR PRECEDENCE AND ASSOCIATIVITY (1)

