

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 1 – INTRODUCTION TO C

TOPIC 9– Input Output statements

1

2 2/19

INPUT/OUTPUT OPERATIONS

Reading, processing, and writing of data are the three essential functions of a computer

program.

 Most programs take some data as input and display the processed data, often known as

information or results.

 So far we have seen two methods of providing data to the program variables.

1. One method is to assign values to variables through the assignment statements such as

x= 5; a = 0; and so on.

2. Another method is to use the input function scanf which can read data from a keyboard.

 For outputting results we have used extensively the function printf which sends results out to

a terminal.

 All input/output operations are carried out through function calls such as printf and scanf.

 There exist several functions that have more or less become standard for input and output

operations in C.

 These functions are collectively known as the standard I/O library.

 33/19

READING A CHARACTER

 The simplest of all input/output operations is Reading & Writing a character.

 Reading a Character:

• Can be done from the ‘standard input’ unit (usually the keyboard)

 Writing a Character:

• writing it to the ‘standard output’ unit (usually the screen).

 Reading a single character can be done by using the function getchar. (This can also

be done with the help of the scanf function)

 The getchar takes the following form:

getchar();

variable_name = getchar();

 variable_name is a valid C name that has been declared as char type.

2 4/19

READING A CHARACTER

 C supports many other similar functions as shown in below table.

 These character functions are contained in the file ctype.h and therefore the statement must be

included in program as like:

 #include <ctype.h>

 55/19

WRITING A CHARACTER

 Like getchar, there is an analogous function putchar for writing characters one at a time to

the terminal.

 It takes the form as shown below:

putchar (variable_name);

 where variable_name is a type char variable containing a character.

 This statement displays the character contained in the variable_name at the terminal.

 For example, the statements

answer = ‘Y’;

putchar (answer);

 The output will be displayed as character “Y” on the screen.

666 6/19

WRITING A CHARACTER

The program uses three new functions

• islower

• toupper

• tolower.

 islower:

 The function islower is a conditional function and takes the value TRUE if the argument is a

lowercase alphabet; otherwise takes the value FALSE.

 toupper:

 The function toupper converts the lowercase argument into an uppercase alphabet.

 tolower:

 The function tolower converts the uppercase argument into a lowercase alphabet.

7777 7/19

#include <stdio.h>

#include<conio.h>

#include <ctype.h>

void main()

{

char alphabet;

WRITING A CHARACTER

Output

Enter an alphabet

a
A

printf(“Enter an alphabet”);

putchar(‘\n’); /* move to next line */

alphabet = getchar();

if (islower(alphabet))

putchar(toupper(alphabet));/* Reverse and

display */

else

putchar(tolower(alphabet)); /* Reverse and

display */

}

Enter an alphabet

Q

q

Enter an alphabet

z

Z

8888 8/19

UNFORMATTED INPUT OUTPUT STATEMENTS

 putchar() Function

 Single Character Output.

 Used to display one character at time on the standard output device.

 This function does the reverse operation of single character input i.e – getchar() function

 getc() Function

 used to accept a single character from the standard input to a character variable

 Ex: char c;

 c=getc()

 putc() Function

 used to display a single character in a character variable to standard output device

 Ex: char a;

 putc(a)

9999 9/19

UNFORMATTED INPUT OUTPUT STATEMENTS

 gets() Function

 Used to read the string (a group of characters) from the standard input device (Keyboard)

 Ex: gets(s)

 puts() Function

 Used to display the string (a group of characters) to the standard output device (screen)

 Ex: puts(s)

 getch() Function

 Reads a single character directly from the keyboard without echoing to the screen.

 Ex: getch()

FORMATTED INPUT

 Formatted input refers to an input data that has been arranged in a particular format.

 For example, consider the following data:

15.75 123 John

 This line contains three pieces of data, arranged in a particular form.

1. First part - of the data should be read into a variable float.

2. Second part - into int

3. Third part - into char.

 This is possible in C using the scanf function. (scanf means scan formatted.)

 General form of scanf :

scanf (“control string”, arg1, arg2, argn);

 The control string specifies the field format in which the data is to be entered

 The arguments arg1, arg2,, argn specify the address of locations where the data is stored.

 Control string and arguments are separated by commas.

 Scanf statements must terminate (end) with semi colon (;)

 Ex:

Scanf(“%d”, &a);

1010/19

1111
1111
111
1

 11/19

INPUTTING INTEGER & REAL NUMBERS

 Inputting Integer Numbers

 General Form:

scanf(“%d %d”, &num1, &num2);

 Example. if the input data typed is

31426 50

 %d – indicates Int type of control string

 & - indicates the storage location of Int(address)

 Scanf correctly assigns 31426 to num1 and 50 to num2.

 Assign format will be like : num1 = 31426 and num2 = 50

 Inputting Real Numbers

 General Form:

scanf(“%f %f”, &num1, &num2);

 Example. if the input data typed is

314.26 50

 Assign format will be like : num1 = 314.26 and num2 = 50.00

1212
1212
121
2

 12/19

General Form:

INPUTTING CHARACTER STRINGS

scanf(“%c %c”, &word1, &word2);

 Example. if the input data typed is

A B

 Assign format will be like : word1 = A and word2 = B

READING MIXED DATA TYPES

 General Form:

scanf (“%d %c %f %s”, &count, &code, &ratio, name);

 will read the data:

15 p 1.575 coffee

 Will assign : count = 15, code = p, ratio = 1.575, name = coffee

FORMATTED INPUT

 1313/19

1414
1414
1414
141

 14/19

Points to Remember while Using scanf

1. All function arguments, except the control string, must be pointers to variables.

2. Format specifications contained in the control string should match the arguments in

order.

3. Input data items must be separated by spaces and must match the variables

receiving the input in the same order.

4. The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a

character that is not valid for the value being read.

5. When searching for a value, scanf ignores line boundaries and simply looks for the

next appropriate character.

6. Any unread data items in a line will be considered as part of the data input line to

the next scanf call.

1515
1515
1515
151

RULES FOR scanf

 Each variable to be read must have a field specification.

 For each field specification, there must be a variable address of proper type.

 Any non-whitespace character used in the format string must have a matching character in

the user input.

 Never end the format string with whitespace. It is a fatal error!

 The scanf reads until:

• A whitespace character is found in a numeric specification, or

• The maximum number of characters have been read or

• An error is detected, or

• The end of file is reached

 15/19

FORMATTED OUTPUT

 The printf statement provides certain features that can be effectively exploited to control the

alignment and spacing of print-outs on the terminals.

 The general form of printf statement is:

printf(“control string”, arg1, arg2,, argn);

 Control string consists of following three types of items:

1. Characters that will be printed on the screen as they appear.

2. Format specifications that define the output format for display of each item.

3. Escape sequence characters such as \n, \t, and \b.

 Example: printf(“a = %f\n b = %f”, a, b);

 Input: if entered 10 20

 Output will be displayed as

a = 10.00

b= 20.00

 1616/19

 1717/19

OUTPUT OF INTEGER NUMBERS

main()

{

int m = 12345;

long n = 987654;

printf(“%d\n”,m);

printf(“%10d\n”,m);

printf(“%010d\n”,m);

printf(“%-10d\n”,m);

printf(“%10ld\n”,n);

printf(“%10ld\n”,-n);

}

Output

12345

12345

0000012345

12345

987654

– 987654

1818
1818
1818
1818

Output of Real Numbers

 The output of a real number may be displayed in decimal notation.

main()

{

float y = 98.7654;

printf(“%7.4f\n”, y);

printf(“%f\n”, y);

printf(“%7.2f\n”, y);

printf(“%-7.2f\n”, y);

printf(“%07.2f\n”, y);

printf(“%*.*f”, 7, 2, y);

printf(“\n”);

printf(“%10.2e\n”, y);

printf(“%12.4e\n”, -y);

printf(“%-10.2e\n”, y);

printf(“%e\n”, y);

}

Output

98.7654

98.765404

98.77

98.77

0098.77

98.77

9.88e+001

-9.8765e+001

9.88e+001

9.876540e+001

 18/19

 1919/19

MIXED DATA OUTPUT

 It is permitted to mix data types in one printf statement.

 For example, the statement of the type

printf(“%d %f %s %c”, a, b, c, d);

 is valid.

 printf uses its control string to decide how many variables to be printed and what their types are.

 Therefore, the format specifications should match the variables in number, order, and type.

 If there are not enough variables or if they are of the wrong type, the output results will be incorrect.

 Enhancing the Readability of Output

 Correctness and clarity of outputs are of utmost importance.

 Correctness depends on the solution procedure

 Clarity depends on the way the output is presented.

 Following are some of the steps we can take to improve the clarity and hence the readability and

understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.

4. Introduce blank lines between the important sections of the output.

	INPUT/OUTPUT OPERATIONS
	READING A CHARACTER
	READING A CHARACTER (1)
	WRITING A CHARACTER
	WRITING A CHARACTER (1)
	WRITING A CHARACTER (2)
	Output

	UNFORMATTED INPUT OUTPUT STATEMENTS
	UNFORMATTED INPUT OUTPUT STATEMENTS (1)
	FORMATTED INPUT
	INPUTTING INTEGER & REAL NUMBERS
	 Inputting Integer Numbers
	 Inputting Real Numbers

	INPUTTING CHARACTER STRINGS
	READING MIXED DATA TYPES
	FORMATTED INPUT (1)
	Points to Remember while Using scanf
	RULES FOR scanf
	FORMATTED OUTPUT
	OUTPUT OF INTEGER NUMBERS
	Output of Real Numbers
	MIXED DATA OUTPUT

