
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 3 – ARRAYS AND INTRODUCTION TO DATA STRUCTURES

TOPIC 2 – One - Dimensional Arrays

22/12

ONE-DIMENSIONAL ARRAYS

 A list of items can be given one variable name using only one subscript and such a variable

is called a single-subscripted variable or a one-dimensional array.

 The subscripted variable refers to the nth element of x.

 For example

 x[1], x[2], x[3],.........x[n]

 The subscript can begin with number 0. That is x[0] is allowed.

 For example, if we want to represent a set of five numbers, say (35, 40, 20, 57, 19), by an array

variable number, then we may declare the variable number as follows

int number[5];

33/12

DECLARATION & STORAGE

 The five numbers to be stored in an one dimensional array is 35, 40, 20, 57, 19, where it can be

declared as int number[5];

44/12

ARRAY - USAGE IN PROGRAM

 These elements (array) may be used in programs just like any other C variable.

 For example, the following are valid statements:

a = number[0] + 10;

number[4] = number[0] + number [2];

number[2] = x[5] + y[10];

value[6] = number[i] * 3;

 C performs no bounds checking and, therefore, care should be exercised to ensure that the

array indices are within the declared limits.

 For Example,

 int a[2] will support only 3 variables, if the value exceeds more than 3 means it will lead to

error.

555/12

DECLARATION OF ONE-DIMENSIONAL ARRAYS

 Like any other variable, arrays must be declared before they are used so that the compiler

can allocate space for them in memory.

 The general form of array declaration is type variable-name[size];

 The type specifies the type of element that will be contained in the array, such as int, float, or

char

 The size indicates the maximum number of elements that can be stored inside the array.

 For example, float height[50];

• declares the height to be an array containing 50 real elements.

• Any subscripts 0 to 49 are valid.

 Similarly, int group[10];

• declares the group as an array to contain a maximum of 10 integer constants.

 Remember: Any reference to the arrays outside the declared limits would not necessarily cause

an error.

 Rather, it might result in unpredictable program results.

666/12

DECLARATION OF ONE-DIMENSIONAL ARRAYS

 The C language treats character strings simply as arrays of characters.

 The size in a character string represents the maximum number of characters that the

string can hold.

 For instance, char name[10];

• declares the name as a character array (string) variable that can hold a maximum

of 10 characters.

 Suppose we read the following string constant into the string variable name.

 “WELL DONE”

 Each character of the string is treated as an element of the array name and is stored in

the memory as given in the figure.

 When the compiler sees a character string, it terminates it with an additional null

character.

 Thus, the element name[10] holds the null character ‘\0’.

 NOTE:

 When declaring character arrays, we must allow one extra element space for the null

terminator.

777/12

COMPILE TIME INITIALIZATION VS RUN TIME

INITIALIZATION

Assigning or initializing the values for

the variables while coding itself depicts

compile time initialization.

#include <stdio.h>

int main()

{

int a=20;

printf("The value of a is : %d",a):

return 0;

}

Assigning or initializing the values for

the variables while getting the input

from the user depicts run time

initialization.

#include <stdio.h>

int main()

{

int a;

printf(“Enter The value of a "):

Scanf(“%d”, &a);

printf("The value of a is : %d",a):

return 0;

}

888/12

INITIALIZATION OF ONE-DIMENSIONAL ARRAYS

 After an array is declared, its elements must be initialized.

 Otherwise, they will contain “garbage”.

 An array can be initialized at either of the following stages:

1. At compile time

2. At run time

Compile Time Initialization

 We can initialize the elements of arrays in the same way as the ordinary variables when they

are declared.

 The general form of initialization of arrays is: type array-name[size] = { list of values };

 The values in the list are separated by commas.

 For example, the statement int number[3] = { 0,0,0 };

 will declare the variable number as an array of size 3 and will assign zero to each element.

999/12

COMPILE TIME INITIALIZATION

 If the number of values in the list is less than the number of elements, then only that many elements will be

initialized.

 The remaining elements will be set to zero automatically.

 For instance, float total[5] = {0.0,15.75,–10};

 will initialize the first three elements to 0.0, 15.75, and –10.0 and the remaining two elements to zero.

 The size may be omitted.

 In such cases, the compiler allocates enough space for all initialized elements.

 For example, the statement int counter[] = {1,1,1,1};

 will declare the counter array to contain four elements with initial values 1.

 This approach works fine as long as we initialize every element in the array.

 Character arrays may be initialized in a similar manner.

 Thus, the statement char name[] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};

 declares the name to be an array of five characters, initialized with the string “John” ending with the null

character.

 Alternatively, we can assign the string literal directly as under: char name [] = “John”;

101010/12

COMPILE TIME INITIALIZATION

 Compile time initialization may be partial.

 That is, the number of initializers may be less than the declared size.

 In such cases, the remaining elements are inilialized to zero, if the array type is numeric and

 NULL if the type is char.

 For example, int number [5] = {10, 20};

 will initialize the first two elements to 10 and 20 respectively, and the remaining elements to

0.

 Similarly, the declaration. char city [5] = {‘B’};

 will initialize the first element to ‘B’ and the remaining four to NULL.

 It is a good idea, however, to declare the size explicitly, as it allows the compiler to do some

error checking.

 Remember, however, if we have more initializers than the declared size, the compiler will

produce an error.

 That is, the statement int number [3] = {10, 20, 30, 40};

 will not work. It is illegal in C.

111111/12

RUN TIME INITIALIZATION

 An array can be explicitly initialized at run time.

 This approach is usually applied for initializing large arrays

 For example, consider the following segment of a C program.

– – – –– – – –

for (i = 0; i < 100; i = i+1)

{

if i < 50

sum[i] = 0.0; /* assignment statement */

else

sum[i] = 1.0;

}

– – – –– – – –

 The first 50 elements of the array sum are initialized to zero while the remaining 50 elements

are initialized to 1.0 at run time.

121212/12

RUN TIME INITIALIZATION

// Program to take 5 values from the user and store them in an array

// Print the elements stored in the array

#include <stdio.h>

#include <conio.h>

int main()

{

int values[5];

printf("Enter 5 integers: ");

// taking input and storing it in an array

for(int i = 0; i < 5; ++i)

{

scanf("%d", &values[i]);

}

printf("Displaying integers: ");

// printing elements of an array

for(int i = 0; i < 5; ++i)

{

printf("%d\n", values[i]);

}

return 0;

}

OUTPUT:

Enter 5 integers: 1

-3

34

0

3

Displaying integers: 1

-3

34

0

3

