SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 - OPERATING SYSTEMS
Il YEAR/ IV SEMESTER
UNIT — Il Process Scheduling And Synchronization

Topic: Process Synchronization : Classic Problems of Synchronization

Mrs. M. Lavanya
Assistant Professor
Department of Computer Science and Engineering

ST rionts

B SV
o~ i,
~y N
~ b
‘0 R s &
P — = —
& >
- y
b Tt (TR '
s 20
LA ? g o~
WAy

Classic Problems of Synchronization

*The Bounded-Buffer Problem
*The Readers — Writers Problem
*The Dining-Philosophers Problem

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/ Process
Synchronization : Classic Problems of Synchronization/ Mrs.M.Lavanya/AP/CSE/SNSCT

oy

o -
g

C ¢ S o

LR - Trarnonls

-
-

m'rlihe Bounded-Buffer Problem

[

In our problen'1, the producer and consumer processes share the following
data structures:

int n;

semaphore mutex = 1;
semaphore empty = n;
semaphore full = 0

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 3
Mrs.M.Lavanya/AP/CSE/SNSCT

L %
~»
TrITIoNs

do {

/* produce an item in next produced */

wait (empty) ;
wait (mutex) ;

/* add next_produced to the buffer */

signal (mutex) ;
signal (full);
} while (true);

Figure 5.9 The structure of the producer process.
19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/

Process Synchronization : Classic Problems of Synchronization/ 4
Mrs.M.Lavanya/AP/CSE/SNSCT

N(\(\J"Vq L~ "
!SD. *‘/Z‘ ~ a
C ¢ Y >

Tryronls

do {
wait (full);
wait (mutex) ;

/* remove an item from buffer to next _consumed */

signal (mutex) ;
signal (empty) ;

/* consume the item in next consumed */

} while (true);

Figure 5.10 The structure of the consumer process.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 5
Mrs.M.Lavanya/AP/CSE/SNSCT

9
CLLSTITITIONS

C ¢ ST 5
C -)

* Note the symmetry between the producer and the
consumet.

* We can interpret this code as the producer producing full
buffers for the consumer or as the consumer producing
empty buffers for the producer.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 6
Mrs.M.Lavanya/AP/CSE/SNSCT

*
““The Readers — Writers Problem

e Suppose that a database is to be shared among several concurrent
processes. Some of these processes may want only to read the
database, whereas others may want to update (that is, to read and
write) the database. We distinguish between these two types of
processes by referring to the former as readers and to the latter as
writers. Obviously, if two readers access the shared data
simultaneously, no adverse effects will result. However, if a writer and
some other process (either a reader or a writer) access the database
simultaneously, chaos may ensue. To ensure that these difficulties do
not arise, we require that the writers have exclusive access to the
shared database while writing to the database. This synchronization
problem is referred to as the readers—writers problem.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 7
Mrs.M.Lavanya/AP/CSE/SNSCT

CLLSTITITIONS

-
':_’F
@

The readers—writers problem has several variations, all involving
priorities.

The simplest one, referred to as the first readers—writers problem,
requires that no reader be kept waiting unless a writer has already
obtained permission to use the shared object. In other words, no
reader should wait for other readers to finish simply because a writer
IS waiting.

The second readers —writers problem requires that, once a writer is
ready, that writer perform its write as soon as possible. In other
words, if a writer is waiting to access the object, no new readers
may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 8
Mrs.M.Lavanya/AP/CSE/SNSCT

[W

T >

Tryronls

In the soluti(;n to the first readers—writers problem, the reader processes
share the following data structures:

semaphore rw mutex = 1;
semaphore mutex = 1;
int read count = 0;

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 9
Mrs.M.Lavanya/AP/CSE/SNSCT

L %
~»
TrITIoNs

do {
wait (rw mutex) ;
/* writing is performed */
signal (rw mutex) ;

} while (true);

Figure 5.11 The structure of a writer process.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 10
Mrs.M.Lavanya/AP/CSE/SNSCT

S, S
do {
wait (mutex) ;
read count++;
if (read count == 1)
walit (rw_mutex) ;
signal (mutex) ;
/* reading is performed */
wait (mutex) ;
read count—-;
if (read_count == 0)
signal (rw mutex) ;
signal (mutex) ;
} while (true);

Figure 5.12 The structure of a reader process.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 11
Mrs.M.Lavanya/AP/CSE/SNSCT

=N a..
g5 >

Tryronls

The readers—writers problem and its solutions have been generalized to
provide reader—writer locks on some systems. Acquiring a reader—writer lock
requires specifying the mode of the lock: either read or write access. When a
process wishes only to read shared data, it requests the reader—writer lock
in read mode. A process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader—writer lock in read mode, but only one process may acquire the lock
for writing, as exclusive access is required for writers.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 12
Mrs.M.Lavanya/AP/CSE/SNSCT

AV "
7 S' S
C ¢ B -

Tryronls

* Inapplications where it is easy to identify which processes only read shared
data and which processes only write shared data.

® Inapplications that have more readers than writers. This is because reader-
writer locks generally require more overhead to establish than semaphores
or mutual-exclusion locks. The increased concurrency of allowing multiple
readers compensates for the overhead involved in setting up the reader—
writer lock.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 13
Mrs.M.Lavanya/AP/CSE/SNSCT

Gt P
S0 MR -
o ¢ By o >
[

%

Tryronls

-

TG

4
The Dining-Philosophers Problem

Figure 5.13 The situation of the dining philosophers.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 14
Mrs.M.Lavanya/AP/CSE/SNSCT

T do {
wait (chopstick[il);
wait (chopstick[(i+1) % 5]1);

Thus, the shared data are /* eat for awhile */

semaphore chopstick([5]; Co. .
signal (chopstick[i]);
signal (chopstick[(i+1) % 51);
/* think for awhile */

} while (true);

Figure 5.14 The structure of philosopher i.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/
Mrs.M.Lavanya/AP/CSE/SNSCT

15

Several possible remedies to the deadlock problem are replaced by:

* Allow at most four philosophers to be sitting simultaneously at the table.

* Allow a philosopher to pick up her chopsticks only if both chopsticks are

available (to do this, she must pick them up in a critical section).

¢ Use an asymmetric solution—that is, an odd-numbered philosopher picks
up first her left chopstick and then her right chopstick, whereas an even-
numbered philosopher picks up her right chopstick and then her left
chopstick.

A deadlock-free solution does not necessarily eliminate the
possibility of starvation.

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 16
Mrs.M.Lavanya/AP/CSE/SNSCT

‘*’///U//J/IJ

-
C ¢ BT

REFERENCES @

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)
T2, Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010
REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.
R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th
Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems — Internals and Design Principles”, 7th Edition, Prentice
Hall, 2011

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 17
Mrs.M.Lavanya/AP/CSE/SNSCT

Trronls

19CSB201 — Operating Systems/ Unit-1l/ Process Scheduling and Synchronization/
Process Synchronization : Classic Problems of Synchronization/ 18
Mrs.M.Lavanya/AP/CSE/SNSCT

