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Paging

Physical address space of a process can be noncontiguous;
prog:le%.cl, is allocated physical memory whenever the latter is
available

* Avoids external fragmentation
* Avoids problem of varying sized memory chunks

Divide physical memory into fixed-sized blocks called frames
* Size is power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages
Keep track of all free frames

To run a program of size N pages, need to find N free frames and
load program

Set up a page table to translate logical to physical addresses
Backing store likewise split into pages
Still have Internal fragmentation
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Address Translation Scheme O S

* Address generated by CPU is divided into:

* Page number (p) — used as an index into a page
table which contains base address of each page in
physical memory

* Page offset (d) — combined with base address to
define the physical memory address that is sent to
the memory unit

page number | page offset
P d

m -n n

* For given logical address space 2™ and page size 2"
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Paging Model of Logical and Physical Memory
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Paging Example <
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n=2 and m=4 32-byte memory and 4-byte pages
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Paging (Cont.) o S

* Calculating internal fragmentation
* Page size = 2,048 bytes
* Process size = 72,766 bytes
e 35 pages + 1,086 bytes
* Internal fragmentation of 2,048 - 1,086 = 962 bytes
* Worst case fragmentation = 1 frame — 1 byte
* On average fragmentation = 1/ 2 frame size
* So small frame sizes desirable?
* But each page table entry takes memory to track

* Page sizes growing over time
* Solaris supports two page sizes —8 KB and 4 MB

* Process view and physical memory now very different

* By implementation process can only access its own
memory
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Free Frames <
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Implementation of Page Table 0! S

* Page table is kept in main memory

* Page-table base register (PTBR) points to the
page table

* Page-table length register (PTLR) indicates size
of the page table

* |In this scheme every data/instruction access
requires two memory accesses

* One for the page table and one for the data /
instruction

* The two memory access problem can be solved
by the use of a special fast-lookup hardware
cache called associative memory or translation
look-aside buffers (TLBs)
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Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers
(ASIDs) in each TLB entry — uniquely
identifies each process to provide address-
space protection for that process

e Otherwise need to flush at every context switch
e TLBs typically small (64 to 1,024 entries)

* On a TLB miss, value is loaded into the TLB
for faster access next time
* Replacement policies must be considered

* Some entries can be wired down for permanent
fast access
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Assoclative Memory

* Associative memory — parallel search

Page # Frame #

* Address translation (p, d)

* If pis in associative register, get frame # out
e Otherwise get frame # from page table in memory
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¢§§ Effective Access Time A

Associative Lookup = € time unit
* Can be < 10% of memory access time

Hit ratio = o,
* Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

Consider o = 80%, € = 20ns for TLB search, 100ns for memory
access

Effective Access Time (EAT)
EAT=(1+¢c)a+(2+&)(1-0)
=2+e—-

Consider o = 80%, € = 20ns for TLB search, 100ns for memory
access

e EAT=0.80x100+0.20x200=120ns

Consider more realistic hit ratio -> o =99%, € = 20ns for TLB
search, 100ns for memory access

e EAT=0.99x100+0.01x200=101ns
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Memory Protection

* Memory protection implemented by associating
protection bit with each frame to indicate if
read-only or read-write access is allowed

e Can also add more bits to indicate page execute-only,
and so on

* Valid-invalid bit attached to each entry in the
page table:

» “valid” indicates that the associated page is in the
process logical address space, and is thus a legal

page
 “invalid” indicates that the page is not in the process’
logical address space

e Or use page-table length register (PTLR)
* Any violations result in a trap to the kernel
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Valid (v) or Invalid (i) Bit In A Page Table
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Shared Pages

 Shared code

* One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems)

* Similar to multiple threads sharing the same
process space

* Also useful for interprocess communication if
sharing of read-write pages is allowed

* Private code and data

* Each process keeps a separate copy of the code
and data

* The pages for the private code and data can
appear anywhere in the logical address space
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