SNS COLLEGE OF TECHNOLOGY -

> .
LB rIriTions

Coimbatore-35.
An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 - OPERATING SYSTEMS
Il YEAR/ IV SEMESTER
UNIT — Il Storage Management

Topic: Memory Management : Paging

Mrs. M. Lavanya
Assistant Professor
Department of Computer Science and Engineering

Paging

Physical address space of a process can be noncontiguous;
prog:le%.cl, is allocated physical memory whenever the latter is
available

* Avoids external fragmentation
* Avoids problem of varying sized memory chunks

Divide physical memory into fixed-sized blocks called frames
* Size is power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages
Keep track of all free frames

To run a program of size N pages, need to find N free frames and
load program

Set up a page table to translate logical to physical addresses
Backing store likewise split into pages
Still have Internal fragmentation

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

<

» g
LI ITions

Address Translation Scheme O S

* Address generated by CPU is divided into:

* Page number (p) — used as an index into a page
table which contains base address of each page in
physical memory

* Page offset (d) — combined with base address to
define the physical memory address that is sent to
the memory unit

page number | page offset
P d

m -n n

* For given logical address space 2™ and page size 2"

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management 3
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

L

Paging Hardware ~

Tririonls

logical physical
address address fO000 ... 0000

Py T EaEN .
A
p{

5 i BEETCE K G B

f

physical
memory

page table

19CSB201 — Operating Systems/ Unit-Ill/ Storage Management/
Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

Paging Model of Logical and Physical Memory

frame
number
page 0 0
Of1
page 1 1 2 1| page 0
2 (18
age 2 2
i 3 |§%
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

19CSB201 — Operating Systems/ Unit-Ill/ Storage Management/
Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

~»

%

TrIrionls

[S

Paging Example <

TrIrionls

0|a 0
11b
2 |¢
3|d
4|e 4 |
5| (=] i
65149 0—5—1 K
71h 116 |
8|1 QZ‘ 8 |m
91| { n
10| k e o
10 page table p
12| m 12
13| n
14| 0
15| p
logical memory 16
20 | 8
b
c
| d
24 | ©
f
g
h
28

physical memory

n=2 and m=4 32-byte memory and 4-byte pages

19CSB201 — Operating Systems/ Unit-Ill/ Storage Management/ 6
Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

Paging (Cont.) o S

* Calculating internal fragmentation
* Page size = 2,048 bytes
* Process size = 72,766 bytes
e 35 pages + 1,086 bytes
* Internal fragmentation of 2,048 - 1,086 = 962 bytes
* Worst case fragmentation = 1 frame — 1 byte
* On average fragmentation = 1/ 2 frame size
* So small frame sizes desirable?
* But each page table entry takes memory to track

* Page sizes growing over time
* Solaris supports two page sizes —8 KB and 4 MB

* Process view and physical memory now very different

* By implementation process can only access its own
memory

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management 7
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

Free Frames <
Trirnonls
free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page O
15
2 15 2R 15
S -
page 0 16 page 0 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
19 o[i4 19
1|18
20 2(18 20 |page 3
320
21 new-process page table 21
(a) (b)
Before allocation After allocation

19CSB201 — Operating Systems/ Unit-Ill/ Storage Management/
Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

Implementation of Page Table 0! S

* Page table is kept in main memory

* Page-table base register (PTBR) points to the
page table

* Page-table length register (PTLR) indicates size
of the page table

* |In this scheme every data/instruction access
requires two memory accesses

* One for the page table and one for the data /
instruction

* The two memory access problem can be solved
by the use of a special fast-lookup hardware
cache called associative memory or translation
look-aside buffers (TLBs)

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management 9
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers
(ASIDs) in each TLB entry — uniquely
identifies each process to provide address-
space protection for that process

e Otherwise need to flush at every context switch
e TLBs typically small (64 to 1,024 entries)

* On a TLB miss, value is loaded into the TLB
for faster access next time
* Replacement policies must be considered

* Some entries can be wired down for permanent
fast access

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

10

!
SIrIrionls

Assoclative Memory

* Associative memory — parallel search

Page # Frame #

* Address translation (p, d)

* If pis in associative register, get frame # out
e Otherwise get frame # from page table in memory

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

11

INET

WIS TITYTIONS

ANV,

S0 @R

#82 Paging Hardware With TLB O ! &
MRS

logical
address
CPU —-{ p | d |
page frame
number number
TLB hit physical
I address
f d —
TLB ‘
p{
TLB miss % f
— physical
memory
page table

19CSB201 — Operating Systems/ Unit-Ill/ Storage Management/

Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT 12

¢§§ Effective Access Time A

Associative Lookup = € time unit
* Can be < 10% of memory access time

Hit ratio = o,
* Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

Consider o = 80%, € = 20ns for TLB search, 100ns for memory
access

Effective Access Time (EAT)
EAT=(1+¢c)a+(2+&)(1-0)
=2+e—-

Consider o = 80%, € = 20ns for TLB search, 100ns for memory
access

e EAT=0.80x100+0.20x200=120ns

Consider more realistic hit ratio -> o =99%, € = 20ns for TLB
search, 100ns for memory access

e EAT=0.99x100+0.01x200=101ns

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management

: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT 13

Memory Protection

* Memory protection implemented by associating
protection bit with each frame to indicate if
read-only or read-write access is allowed

e Can also add more bits to indicate page execute-only,
and so on

* Valid-invalid bit attached to each entry in the
page table:

» “valid” indicates that the associated page is in the
process logical address space, and is thus a legal

page
 “invalid” indicates that the page is not in the process’
logical address space

e Or use page-table length register (PTLR)
* Any violations result in a trap to the kernel

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

’X
LI ITions

14

Valid (v) or Invalid (i) Bit In A Page Table

[% o
> ~»
Trorionls
0
1
2| page 0
00000 frame number valid-invalid bit
page 0 L o 3| page 1
o(2|v
page 1 113y 4| page2
2(4|v
age 2 5
hed 3 B
page 3 48|V 6
5|9 |v
page 4 eloli 7| page 3
10468 page 5 7 . 8| page 4
12,287 page table
9| page5
page n
19CSB201 — Operating Systems/ Unit-Ill/ Storage Management/ 15

Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

Shared Pages

 Shared code

* One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems)

* Similar to multiple threads sharing the same
process space

* Also useful for interprocess communication if
sharing of read-write pages is allowed

* Private code and data

* Each process keeps a separate copy of the code
and data

* The pages for the private code and data can
appear anywhere in the logical address space

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management

: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT 16

_,r‘f‘u».
5

N

Shared Pages

Example

edi 0
3
ed? 3 1| datai
6d3 - o| data3
1
data 1 page table 3 ed 1
for P
i ed 1
process P, 3 4| ed2
ed 2
4 5
ed 3 &
7 6 ed3
data 2 page table
for P2 7| data?
e 2 process P, .
ed?2 4
9
ed3 =
2 10
data 3 page table
for P, 14
process P,

STTIrionls

19CSB201 — Operating Systems/ Unit-lll/ Storage Management/

1
Memory Management : Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT /

N\
~J) [N —
=T
r .’g x | - ~—
N 2 w
L OISR -
= < -
A 4/’4 =

REFERENCES 77

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,
2009.)
T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:
R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems™, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th
Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems — Internals and Design Principles”, 7th Edition, Prentice
Hall, 2011

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management

18
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

N "
3 5

Tririonls

19CSB201 — Operating Systems/ Unit-1ll/ Storage Management/ Memory Management
: Paging/ Mrs.M.Lavanya/AP/CSE/SNSCT

19

