
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Mrs. M. Lavanya

Assistant Professor

Department of Computer Science and Engineering

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – III Storage Management

Topic: Virtual Memory : Page Replacement

Page Replacement

• Prevent over-allocation of memory by
modifying page-fault service routine to
include page replacement

• Use modify (dirty) bit to reduce overhead
of page transfers – only modified pages
are written to disk

• Page replacement completes separation
between logical memory and physical
memory – large virtual memory can be
provided on a smaller physical memory

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 2

Need For Page Replacement

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Virtual Memory : Page Replacement/

Mrs.M.Lavanya/AP/CSE/SNSCT
3

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to

select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transfers for page fault – increasing EAT

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 4

Page Replacement

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Virtual Memory : Page Replacement/

Mrs.M.Lavanya/AP/CSE/SNSCT
5

Page and Frame Replacement Algorithms

• Frame-allocation algorithm determines
• How many frames to give each process
• Which frames to replace

• Page-replacement algorithm
• Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string
• String is just page numbers, not full addresses
• Repeated access to the same page does not cause a page fault
• Results depend on number of frames available

• In all our examples, the reference string of referenced
page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 6

Graph of Page Faults Versus The Number of Frames

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Virtual Memory : Page Replacement/

Mrs.M.Lavanya/AP/CSE/SNSCT
7

First-In-First-Out (FIFO) Algorithm

• Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per
process)

• Can vary by reference string: consider
1,2,3,4,1,2,5,1,2,3,4,5
• Adding more frames can cause more page faults!

• Belady’s Anomaly

• How to track ages of pages?
• Just use a FIFO queue

15 page faults

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 8

FIFO Illustrating Belady’s Anomaly

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Virtual Memory : Page Replacement/

Mrs.M.Lavanya/AP/CSE/SNSCT
9

Optimal Algorithm

• Replace page that will not be used for longest period
of time
• 9 is optimal for the example

• How do you know this?
• Can’t read the future

• Used for measuring how well your algorithm
performs

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 10

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future

• Replace page that has not been used in the most amount of time

• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT

• Generally good algorithm and frequently used

• But how to implement?

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 11

LRU Algorithm (Cont.)
• Counter implementation

• Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter

• When a page needs to be changed, look at the counters to
find smallest value
• Search through table needed

• Stack implementation
• Keep a stack of page numbers in a double link form:
• Page referenced:

• move it to the top
• requires 6 pointers to be changed

• But each update more expensive
• No search for replacement

• LRU and OPT are cases of stack algorithms that
don’t have Belady’s Anomaly

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 12

Use Of A Stack to Record Most Recent Page References

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Virtual Memory : Page Replacement/

Mrs.M.Lavanya/AP/CSE/SNSCT
13

LRU Approximation Algorithms

• LRU needs special hardware and still slow

• Reference bit
• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

• set reference bit 0, leave page in memory

• replace next page, subject to same rules

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 14

Second-Chance (clock) Page-Replacement Algorithm

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Virtual Memory : Page Replacement/

Mrs.M.Lavanya/AP/CSE/SNSCT
15

Enhanced Second-Chance Algorithm

• Improve algorithm by using reference bit and modify
bit (if available) in concert

• Take ordered pair (reference, modify)
1.(0, 0) neither recently used not modified – best page

to replace

2.(0, 1) not recently used but modified – not quite as
good, must write out before replacement

3.(1, 0) recently used but clean – probably will be used
again soon

4.(1, 1) recently used and modified – probably will be
used again soon and need to write out before
replacement

• When page replacement called for, use the clock
scheme but use the four classes replace page in
lowest non-empty class
• Might need to search circular queue several times

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 16

Counting Algorithms

• Keep a counter of the number of references
that have been made to each page
• Not common

• Lease Frequently Used (LFU) Algorithm:
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm: based
on the argument that the page with the
smallest count was probably just brought in and
has yet to be used

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 17

Page-Buffering Algorithms

• Keep a pool of free frames, always
• Then frame available when needed, not found at fault

time
• Read page into free frame and select victim to evict and

add to free pool
• When convenient, evict victim

• Possibly, keep list of modified pages
• When backing store otherwise idle, write pages there

and set to non-dirty

• Possibly, keep free frame contents intact and note
what is in them
• If referenced again before reused, no need to load

contents again from disk
• Generally useful to reduce penalty if wrong victim

frame selected

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 18

Applications and Page Replacement

• All of these algorithms have OS guessing about
future page access

• Some applications have better knowledge – i.e.
databases

• Memory intensive applications can cause double
buffering
• OS keeps copy of page in memory as I/O buffer
• Application keeps page in memory for its own work

• Operating system can given direct access to the
disk, getting out of the way of the applications
• Raw disk mode

• Bypasses buffering, locking, etc

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 19

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT

20

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Virtual Memory : Page
Replacement/ Mrs.M.Lavanya/AP/CSE/SNSCT 21

