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Page Replacement

• Prevent over-allocation of memory by 
modifying page-fault service routine to 
include page replacement

• Use modify (dirty) bit to reduce overhead 
of page transfers – only modified pages 
are written to disk

• Page replacement completes separation 
between logical memory and physical 
memory – large virtual memory can be 
provided on a smaller physical memory
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to 

select a victim frame
- Write victim frame to disk if dirty

3. Bring  the desired page into the (newly) free frame; update the page 
and frame tables

4. Continue the process by restarting the instruction that caused the 
trap

Note now potentially 2 page transfers for page fault – increasing EAT
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Page Replacement
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Page and Frame Replacement Algorithms

• Frame-allocation algorithm determines 
• How many frames to give each process
• Which frames to replace

• Page-replacement algorithm
• Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of 
memory references (reference string) and computing the 
number of page faults on that string
• String is just page numbers, not full addresses
• Repeated access to the same page does not cause a page fault
• Results depend on number of frames available

• In all our examples, the reference string of referenced 
page numbers is 

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm

• Reference string: 
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per 
process)

• Can vary by reference string: consider 
1,2,3,4,1,2,5,1,2,3,4,5
• Adding more frames can cause more page faults!

• Belady’s Anomaly

• How to track ages of pages? 
• Just use a FIFO queue

15 page faults
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FIFO Illustrating Belady’s Anomaly

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ 
Virtual Memory : Page Replacement/ 

Mrs.M.Lavanya/AP/CSE/SNSCT
9



Optimal Algorithm

• Replace page that will not be used for longest period 
of time
• 9 is optimal for the example

• How do you know this?
• Can’t read the future

• Used for measuring how well your algorithm 
performs
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Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future

• Replace page that has not been used in the most amount of time

• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT

• Generally good algorithm and frequently used

• But how to implement?
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LRU Algorithm (Cont.)
• Counter implementation

• Every page entry has a counter; every time page is 
referenced through this entry, copy the clock into the 
counter

• When a page needs to be changed, look at the counters to 
find smallest value
• Search through table needed

• Stack implementation
• Keep a stack of page numbers in a double link form:
• Page referenced:

• move it to the top
• requires 6 pointers to be changed

• But each update more expensive
• No search for replacement

• LRU and OPT are cases of stack algorithms that 
don’t have Belady’s Anomaly
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Use Of A Stack to Record Most Recent Page References
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LRU Approximation Algorithms

• LRU needs special hardware and still slow

• Reference bit
• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has 

• Reference bit = 0 -> replace it
• reference bit = 1 then:

• set reference bit 0, leave page in memory

• replace next page, subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm
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Enhanced Second-Chance Algorithm

• Improve algorithm by using reference bit and modify 
bit (if available) in concert

• Take ordered pair (reference, modify)
1.(0, 0) neither recently used not modified – best page 

to replace

2.(0, 1) not recently used but modified – not quite as 
good, must write out before replacement

3.(1, 0) recently used but clean – probably will be used 
again soon

4.(1, 1) recently used and modified – probably will be 
used again soon and need to write out before 
replacement

• When page replacement called for, use the clock 
scheme  but use the four classes replace page in 
lowest non-empty class
• Might need to search circular queue several times
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Counting Algorithms

• Keep a counter of the number of references 
that have been made to each page
• Not common

• Lease Frequently Used (LFU) Algorithm:  
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm: based 
on the argument that the page with the 
smallest count was probably just brought in and 
has yet to be used
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Page-Buffering Algorithms

• Keep a pool of free frames, always
• Then frame available when needed, not found at fault 

time
• Read page into free frame and select victim to evict and 

add to free pool
• When convenient, evict victim

• Possibly, keep list of modified pages
• When backing store otherwise idle, write pages there 

and set to non-dirty

• Possibly, keep free frame contents intact and note 
what is in them
• If referenced again before reused, no need to load 

contents again from disk
• Generally useful to reduce penalty if wrong victim 

frame selected  
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Applications and Page Replacement

• All of these algorithms have OS guessing about 
future page access

• Some applications have better knowledge – i.e. 
databases

• Memory intensive applications can cause double 
buffering
• OS keeps copy of page in memory as I/O buffer
• Application keeps page in memory for its own work

• Operating system can given direct access to the 
disk, getting out of the way of the applications
• Raw disk mode

• Bypasses buffering, locking, etc
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