
SNS COLLEGE OF

TECHNOLOGY
(An Autonomous Institution)

COIMBATORE- 641 035

 Department of Computer Science and Engineering

 19CST302-Neural Networks and Deep learning

Deep RNN is a type of computer program that can learn to recognize

patterns in data that occur in a sequence, like words in a sentence or

musical notes in a song. It works by processing information in layers,

building up a more complete understanding of the data with each

layer. This helps it capture complex relationships between the different

pieces of information and make better predictions about what might

come next.

Deep RNNs are used in many real-life applications, such as speech

recognition systems like Siri or Alexa, language translation software,

and even self-driving cars. They’re particularly useful in situations

where there’s a lot of sequential data to process, like when you’re

trying to teach a computer to understand human language.

Deep RNNs, with their ability to handle sequential data and capture

complex relationships between input and output sequences, have

become a powerful tool in various real-life applications, ranging from

speech recognition and natural language processing to music

generation and autonomous driving.

What is it?

Deep RNN (Recurrent Neural Network) refers to a neural network

architecture that has multiple layers of recurrent units. Recurrent

Neural Networks are a type of neural network that is designed to

handle sequential data, such as time series or natural language, by

maintaining an internal memory of previous inputs.

A Deep RNN takes the output from one layer of recurrent units and

feeds it into the next layer, allowing the network to capture more

complex relationships between the input and output sequences. The

number of layers in a deep RNN can vary depending on the

complexity of the problem being solved, and the number of hidden

units in each layer can also be adjusted.

Deep RNNs have been successfully applied in various applications

such as natural language processing, speech recognition, image

captioning, and music generation. The use of deep RNNs has been

shown to significantly improve performance compared to single-layer

RNNs or shallow neural networks.

Real life examples

Deep RNNs have been successfully applied in various real-life

applications. Here are a few examples:

1. Speech Recognition: Deep RNNs have been used to build

speech recognition systems, such as Google’s Speech API,

Amazon’s Alexa, and Apple’s Siri. These systems use deep

RNNs to convert speech signals into text.

2. Natural Language Processing (NLP): Deep RNNs are used in

various NLP applications, such as language translation,

sentiment analysis, and text classification. For example,

Google Translate uses a deep RNN to translate text from one

language to another.

3. Music Generation: Deep RNNs have been used to generate

music, such as Magenta’s MusicVAE, which uses a deep RNN

to generate melodies and harmonies.

4. Image Captioning: Deep RNNs are used in image captioning

systems, such as Google’s Show and Tell, which uses a deep

RNN to generate captions for images.

5. Autonomous Driving: Deep RNNs have been used in

autonomous driving systems to predict the behaviour of

other vehicles on the road, such as the work done by Waymo.

These are just a few examples of the many real-life applications of

deep RNNs.

Steps to develop a deep RNN application

Developing an end-to-end deep RNN application involves several

steps, including data preparation, model architecture design, training

the model, and deploying it. Here is an example of an end-to-end

deep RNN application for sentiment analysis:

1. Data preparation: The first step is to gather and preprocess

the data. In this case, we’ll need a dataset of text reviews

labelled with positive or negative sentiment. The text data

needs to be cleaned, tokenized, and converted to the

numerical format. This can be done using libraries like NLTK

or spaCy in Python.

2. Model architecture design: The next step is to design the

deep RNN architecture. We’ll need to decide on the number

of layers, number of hidden units, and type of recurrent unit

(e.g. LSTM or GRU). We’ll also need to decide how to handle

the input and output sequences, such as using padding or

truncation.

3. Training the model: Once the architecture is designed, we’ll

need to train the model using the preprocessed data. We’ll

split the data into training and validation sets and train the

model using an optimization algorithm like stochastic

gradient descent. We’ll also need to set hyperparameters like

learning rate and batch size.

4. Evaluating the model: After training, we’ll evaluate the

model’s performance on a separate test set. We’ll use metrics

like accuracy, precision, recall, and F1 score to assess the

model’s performance.

5. Deploying the model: Finally, we’ll deploy the trained model

to a production environment, where it can be used to classify

sentiment in real-time. This could involve integrating the

model into a web application or API.

Overall, developing an end-to-end deep RNN application requires a

combination of technical skills in programming, data preprocessing,

and machine learning, as well as an understanding of the specific

application domain.

