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Create and deploy Convolutional Neural networks using 

Keras for Image data 

1. Load Data 

The first step is to define the functions and classes you intend to use in this tutorial. 

 
You will use the NumPy library to load your dataset and two classes from the Keras 

library to define your model. 

 
The imports required are listed below. 
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# first neural network with keras tutorial 

from numpy import loadtxt 

from tensorflow.keras.models import Sequential 

 
from tensorflow.keras.layers import Dense  

 
... 

You can now load our dataset. 

 
In this Keras tutorial, you will use the Pima Indians onset of diabetes dataset. This is 

a standard machine learning dataset from the UCI Machine Learning repository. It 

describes patient medical record data for Pima Indians and whether they had an 

onset of diabetes within five years. 

 
As such, it is a binary classification problem (onset of diabetes as 1 or not as 0). All 

of the input variables that describe each patient are numerical. This makes it easy to 

use directly with neural networks that expect numerical input and output values and 

https://www.numpy.org/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras


is an ideal choice for our first neural network in Keras. 

 
The dataset is available here: 

 
● Dataset CSV File (pima-indians-diabetes.csv) 

● Dataset Details 

https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names


Download the dataset and place it in your local working directory, the same location 

as your Python file. 

 
Save it with the filename: 

 

1 pima-indians-diabetes.csv 

Take a look inside the file; you should see rows of data like the following: 
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6,148,72,35,0,33.6,0.627,50,1 

 
1,85,66,29,0,26.6,0.351,31,0 

 
8,183,64,0,0,23.3,0.672,32,1 

 
1,89,66,23,94,28.1,0.167,21,0  

 
0,137,40,35,168,43.1,2.288,33,1 

 
...  

You can now load the file as a matrix of numbers using the NumPy function loadtxt(). 

 
There are eight input variables and one output variable (the last column). You will be 

learning a model to map rows of input variables (X) to an output variable (y), which is 

often summarized as y = f(X). 

 
The variables can be summarized as follows: 

 
Input Variables (X): 

 
1. Number of times pregnant 

2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skin fold thickness (mm) 

5. 2-hour serum insulin (mu U/ml) 

6. Body mass index (weight in kg/(height in m)^2) 

7. Diabetes pedigree function 

8. Age (years) 

Output Variables (y): 

https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html


1. Class variable (0 or 1) 

 
Once the CSV file is loaded into memory, you can split the columns of data into input 

and output variables. 

 
The data will be stored in a 2D array where the first dimension is rows and the 

second dimension is columns, e.g., [rows, columns]. 

 
You can split the array into two arrays by selecting subsets of columns using the 

standard NumPy slice operator or “:”. You can select the first eight columns from 

index 0 to index 7 via the slice 0:8. We can then select the output column (the 9th 

variable) via index 8. 
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... 

# load the dataset 

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') 

 
# split into input (X) and output (y) variables  

 
X = dataset[:,0:8] 

 
y = dataset[:,8]  

 
... 

You are now ready to define your neural network model. 

 
Note: The dataset has nine columns, and the range 0:8 will select columns from 0 to 

7, stopping before index 8. If this is new to you, then you can learn more about array 

slicing and ranges in this post: 

 
● How to Index, Slice, and Reshape NumPy Arrays for Machine Learning in 

Python 

 

2. Define Keras Model 

Models in Keras are defined as a sequence of layers. 

https://machinelearningmastery.com/index-slice-reshape-numpy-arrays-machine-learning-python/
https://machinelearningmastery.com/index-slice-reshape-numpy-arrays-machine-learning-python/
https://machinelearningmastery.com/index-slice-reshape-numpy-arrays-machine-learning-python/


We create a Sequential model and add layers one at a time until we are happy with 

our network architecture. 

 
The first thing to get right is to ensure the input layer has the correct number of input 

features. This can be specified when creating the first layer with the input_shape 

argument and setting it to (8,) for presenting the eight input variables as a vector. 

 
How do we know the number of layers and their types? 

 
This is a tricky question. There are heuristics that you can use, and often the best 

network structure is found through a process of trial and error experimentation (I 

explain more about this here). Generally, you need a network large enough to capture 

the structure of the problem. 

 
In this example, let’s use a fully-connected network structure with three layers. 

 
Fully connected layers are defined using the Dense class. You can specify the 

number of neurons or nodes in the layer as the first argument and the activation 

function using the activation argument. 

 
Also, you will use the rectified linear unit activation function referred to as ReLU on 

the first two layers and the Sigmoid function in the output layer. 

 
It used to be the case that Sigmoid and Tanh activation functions were preferred for 

all layers. These days, better performance is achieved using the ReLU activation 

function. Using a sigmoid on the output layer ensures your network output is 

between 0 and 1 and is easy to map to either a probability of class 1 or snap to a hard 

classification of either class with a default threshold of 0.5. 

 
You can piece it all together by adding each layer: 

 
● The model expects rows of data with 8 variables (the input_shape=(8,) 

argument). 

● The first hidden layer has 12 nodes and uses the relu activation function. 

● The second hidden layer has 8 nodes and uses the relu activation function. 

● The output layer has one node and uses the sigmoid activation function. 

https://keras.io/models/sequential/
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://keras.io/layers/core/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
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... 

# define the keras model 

model = Sequential() 

 
model.add(Dense(12, input_shape=(8,), activation='relu'))  

model.add(Dense(8, activation='relu')) 

model.add(Dense(1, activation='sigmoid'))  

 
... 

Note: The most confusing thing here is that the shape of the input to the model is 

defined as an argument on the first hidden layer. This means that the line of code 

that adds the first Dense layer is doing two things, defining the input or visible layer 

and the first hidden layer. 

 

3. Compile Keras Model 

Now that the model is defined, you can compile it. 

 
Compiling the model uses the efficient numerical libraries under the covers (the so- 

called backend) such as Theano or TensorFlow. The backend automatically chooses 

the best way to represent the network for training and making predictions to run on 

your hardware, such as CPU, GPU, or even distributed. 

 
When compiling, you must specify some additional properties required when training 

the network. Remember training a network means finding the best set of weights to 

map inputs to outputs in your dataset. 

 
You must specify the loss function to use to evaluate a set of weights, the optimizer 

used to search through different weights for the network, and any optional metrics 

you want to collect and report during training. 

 
In this case, use cross entropy as the loss argument. This loss is for a binary 

classification problems and is defined in Keras as “binary_crossentropy“. You can 

learn more about choosing loss functions based on your problem here: 



● How to Choose Loss Functions When Training Deep Learning Neural Networks 

 
We will define the optimizer as the efficient stochastic gradient descent algorithm 

“adam“. This is a popular version of gradient descent because it automatically tunes 

itself and gives good results in a wide range of problems. To learn more about the 

Adam version of stochastic gradient descent, see the post: 

 
● Gentle Introduction to the Adam Optimization Algorithm for Deep Learning 

 
Finally, because it is a classification problem, you will collect and report the 

classification accuracy defined via the metrics argument. 

 

1 ... 

 2 # compile the keras model 

3 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

 4 ...  

4. Fit Keras Model 

You have defined your model and compiled it to get ready for efficient computation. 

Now it is time to execute the model on some data. 

You can train or fit your model on your loaded data by calling the fit() function on the 

model. 

 
Training occurs over epochs, and each epoch is split into batches. 

 
● Epoch: One pass through all of the rows in the training dataset 

● Batch: One or more samples considered by the model within an epoch before 

weights are updated 

 
One epoch comprises one or more batches, based on the chosen batch size, and the 

model is fit for many epochs. For more on the difference between epochs and 

batches, see the post: 

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/


● What is the Difference Between a Batch and an Epoch in a Neural Network? 

 
The training process will run for a fixed number of epochs (iterations) through the 

dataset that you must specify using the epochs argument. You must also set the 

number of dataset rows that are considered before the model weights are updated 

within each epoch, called the batch size, and set using the batch_size argument. 

 
This problem will run for a small number of epochs (150) and use a relatively small 

batch size of 10. 

 
These configurations can be chosen experimentally by trial and error. You want to 

train the model enough so that it learns a good (or good enough) mapping of rows of 

input data to the output classification. The model will always have some error, but 

the amount of error will level out after some point for a given model configuration. 

This is called model convergence. 
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... 

# fit the keras model on the dataset 

model.fit(X, y, epochs=150, batch_size=10) 

 
...  

This is where the work happens on your CPU or GPU. 

 
No GPU is required for this example, but if you’re interested in how to run large 

models on GPU hardware cheaply in the cloud, see this post: 

 
● How to Setup Amazon AWS EC2 GPUs to Train Keras Deep Learning Models 

 

5. Evaluate Keras Model 

You have trained our neural network on the entire dataset, and you can evaluate the 

performance of the network on the same dataset. 

 
This will only give you an idea of how well you have modeled the dataset (e.g., train 

accuracy), but no idea of how well the algorithm might perform on new data. This 

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/develop-evaluate-large-deep-learning-models-keras-amazon-web-services/


was done for simplicity, but ideally, you could separate your data into train and test 

datasets for training and evaluation of your model. 

 
You can evaluate your model on your training dataset using the evaluate() function 

and pass it the same input and output used to train the model. 

 
This will generate a prediction for each input and output pair and collect scores, 

including the average loss and any metrics you have configured, such as accuracy. 

 
The evaluate() function will return a list with two values. The first will be the loss of 

the model on the dataset, and the second will be the accuracy of the model on the 

dataset. You are only interested in reporting the accuracy so ignore the loss value. 
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... 

# evaluate the keras model 

_, accuracy = model.evaluate(X, y) 

 
print('Accuracy: %.2f' % (accuracy*100))  

 

 

 

 

6. Tie It All Together 

You have just seen how you can easily create your first neural network model in 

Keras. 

 
Let’s tie it all together into a complete code example. 



from numpy import loadtxt 

from tensorflow.keras.layers import Dense 

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') 

X = dataset[:,0:8] 

# define the keras model 

model.add(Dense(12, input_shape=(8,), activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

model.fit(X, y, epochs=150, batch_size=10) 

_, accuracy = model.evaluate(X, y) 

# first neural network with keras tutorial 

 

from tensorflow.keras.models import Sequential 

 

# load the dataset 

 

# split into input (X) and output (y) variables 

 

y = dataset[:,8] 

 

model = Sequential() 

 

model.add(Dense(8, activation='relu')) 

 

# compile the keras model 

 

# fit the keras model on the dataset 

 

# evaluate the keras model 

 

print('Accuracy: %.2f' % (accuracy*100)) 

 

You can copy all the code into your Python file and save it as 

“keras_first_network.py” in the same directory as your data file “pima-indians- 

diabetes.csv“. You can then run the Python file as a script from your command line 

(command prompt) as follows: 

 

1 python keras_first_network.py 

Running this example, you should see a message for each of the 150 epochs, 

printing the loss and accuracy, followed by the final evaluation of the trained model 

on the training dataset. 
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768/768 [==============================] - 0s 63us/step - loss: 0.4817 - acc: 

0.7708 

768/768 [==============================] - 0s 63us/step - loss: 0.4764 - acc: 

0.7747 

768/768 [==============================] - 0s 63us/step - loss: 0.4737 - acc: 

0.7682 

768/768 [==============================] - 0s 64us/step - loss: 0.4730 - acc: 

0.7747 

768/768 [==============================] - 0s 63us/step - loss: 0.4754 - acc: 

0.7799 

Accuracy: 76.56 

It takes about 10 seconds to execute on my workstation running on the CPU. 

 
Ideally, you would like the loss to go to zero and the accuracy to go to 1.0 (e.g., 

100%). This is not possible for any but the most trivial machine learning problems. 

Instead, you will always have some error in your model. The goal is to choose a 

model configuration and training configuration that achieve the lowest loss and 

highest accuracy possible for a given dataset. 

 

 
... 

 

Epoch 147/150 

 

Epoch 148/150 

 

Epoch 149/150 

 

Epoch 150/150 

 

768/768 [==============================] - 0s 38us/step 

 

Note: If you try running this example in an IPython or Jupyter notebook, you may get 

an error. 

 
The reason is the output progress bars during training. You can easily turn these off 

by setting verbose=0 in the call to the fit() and evaluate() functions; for example: 
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... 

# fit the keras model on the dataset without progress bars  

model.fit(X, y, epochs=150, batch_size=10, verbose=0) 

 4 

5 
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# evaluate the keras model 

_, accuracy = model.evaluate(X, y, verbose=0) 

 
...  

Note: Your results may vary given the stochastic nature of the algorithm or 

evaluation procedure, or differences in numerical precision. Consider running the 

example a few times and compare the average outcome. 

 
What score did you get? 

 
Post your results in the comments below. 

 
Neural networks are stochastic algorithms, meaning that the same algorithm on the 

same data can train a different model with different skill each time the code is run. 

This is a feature, not a bug. You can learn more about this in the post: 

 
● Embrace Randomness in Machine Learning 

 
The variance in the performance of the model means that to get a reasonable 

approximation of how well your model is performing, you may need to fit it many 

times and calculate the average of the accuracy scores. For more on this approach to 

evaluating neural networks, see the post: 

 
● How to Evaluate the Skill of Deep Learning Models 

 
For example, below are the accuracy scores from re-running the example five times: 

 

https://machinelearningmastery.com/different-results-each-time-in-machine-learning/
https://machinelearningmastery.com/randomness-in-machine-learning/
https://machinelearningmastery.com/evaluate-skill-deep-learning-models/
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Accuracy: 75.00 

 
Accuracy: 77.73  

 
Accuracy: 77.60 

 
Accuracy: 78.12  

 
Accuracy: 76.17 

You can see that all accuracy scores are around 77%, and the average is 76.924%. 



7. Make Predictions 

The number one question I get asked is: 

 
“After I train my model, how can I use it to make predictions on new data?” 

 
Great question. 

 
You can adapt the above example and use it to generate predictions on the training 

dataset, pretending it is a new dataset you have not seen before. 

 
Making predictions is as easy as calling the predict() function on the model. You are 

using a sigmoid activation function on the output layer, so the predictions will be a 

probability in the range between 0 and 1. You can easily convert them into a crisp 

binary prediction for this classification task by rounding them. 

 
For example: 

 

1 

 
 2 

3 

 4 

 
5 

... 

# make probability predictions with the model 

predictions = model.predict(X) 

# round predictions  

rounded = [round(x[0]) for x in predictions] 

Alternately, you can convert the probability into 0 or 1 to predict crisp classes 

directly; for example: 
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... 

# make class predictions with the model  

predictions = (model.predict(X) > 0.5).astype(int) 

The complete example below makes predictions for each example in the dataset, 

then prints the input data, predicted class, and expected class for the first five 

examples in the dataset. 



from numpy import loadtxt 

from tensorflow.keras.layers import Dense 

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') 

X = dataset[:,0:8] 

# define the keras model 

model.add(Dense(12, input_shape=(8,), activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

model.fit(X, y, epochs=150, batch_size=10, verbose=0) 

predictions = (model.predict(X) > 0.5).astype(int) 

for i in range(5): 

# first neural network with keras make predictions 

 

from tensorflow.keras.models import Sequential 

 

# load the dataset 

 

# split into input (X) and output (y) variables 

 

y = dataset[:,8] 

 

model = Sequential() 

 

model.add(Dense(8, activation='relu')) 

 

# compile the keras model 

 

# fit the keras model on the dataset 

 

# make class predictions with the model 

 

# summarize the first 5 cases 

 

print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i])) 

 

Running the example does not show the progress bar as before, as the verbose 

argument has been set to 0. 

 
After the model is fit, predictions are made for all examples in the dataset, and the 

input rows and predicted class value for the first five examples is printed and 

compared to the expected class value. 
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You can see that most rows are correctly predicted. In fact, you can expect about 

76.9% of the rows to be correctly predicted based on your estimated performance of 

the model in the previous section. 

 

1 [6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0] => 0 (expected 1) 

 2 [1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.351, 31.0] => 0 (expected 0) 

3 [8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0] => 1 (expected 1) 

 4 [1.0,  89.0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0] => 0 (expected 0)  

5 [0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 33.0] => 1 (expected 1) 

If you would like to know more about how to make predictions with Keras models, 

see the post: 

 
● How to Make Predictions with Keras 

 

Keras Tutorial Summary 

In this post, you discovered how to create your first neural network model using the 

powerful Keras Python library for deep learning. 

 
Specifically, you learned the six key steps in using Keras to create a neural network 

or deep learning model step-by-step, including: 

 
1. How to load data 

2. How to define a neural network in Keras 

3. How to compile a Keras model using the efficient numerical backend 

4. How to train a model on data 

5. How to evaluate a model on data 

6. How to make predictions with the model 

 
Do you have any questions about Keras or about this tutorial? 

 
Ask your question in the comments, and I will do my best to answer. 

 

Keras Tutorial Extensions 

https://machinelearningmastery.com/how-to-make-classification-and-regression-predictions-for-deep-learning-models-in-keras/


Well done, you have successfully developed your first neural network using the 

Keras deep learning library in Python. 

 
This section provides some extensions to this tutorial that you might want to explore. 

 
● Tune the Model. Change the configuration of the model or training process 

and see if you can improve the performance of the model, e.g., achieve better 

than 76% accuracy. 

● Save the Model. Update the tutorial to save the model to a file, then load it later 

and use it to make predictions (see this tutorial). 

● Summarize the Model. Update the tutorial to summarize the model and create a 

plot of model layers (see this tutorial). 

● Separate, Train, and Test Datasets. Split the loaded dataset into a training and 

test set (split based on rows) and use one set to train the model and the other 

set to estimate the performance of the model on new data. 

● Plot Learning Curves. The fit() function returns a history object that 

summarizes the loss and accuracy at the end of each epoch. Create line plots 

of this data, called learning curves (see this tutorial). 

● Learn a New Dataset. Update the tutorial to use a different tabular dataset, 

perhaps from the UCI Machine Learning Repository. 

● Use Functional API. Update the tutorial to use the Keras Functional API for 

defining the model (see this tutorial). 

https://machinelearningmastery.com/save-load-keras-deep-learning-models/
https://machinelearningmastery.com/visualize-deep-learning-neural-network-model-keras/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/display-deep-learning-model-training-history-in-keras/
https://archive.ics.uci.edu/ml/index.php
https://machinelearningmastery.com/keras-functional-api-deep-learning/

