

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Cauchy-Riemann Equations

Necessary condition for
$$f(x)$$
 to be analythe:
If w= $f(x) = u+iv$ is an analythe function,
then Cauchy Riemann agos are saterified.
i.e., $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$
 $\Rightarrow u_x = vy$ and $v_x = -u_y$
Sufficient condition for Abalythe function:
If the partial desilvatives u_x , u_y , v_x and
 v_y are all continuous and $u_x = u_y$ and $u_y = -v_x$,
then the function is analythe.
1. Show that the function $f(x) = \overline{x}$ is nowhere
differentiable.
Soln.
Griven $f(x) = \overline{x} = x - iy$
 $u_x = v_y$ and $v = -y$
 $u_x = 1$ $v_x = 0$
 $u_y = 0$ $v_y = -1$
Hence $c-R$ ears are not eatsford.
 $\Rightarrow f(x) = \overline{x}$ is not differentiable.
 $w_x = 1$ $v_x = 0$
 $u_y = 0$ $v_y = -1$
Hence $c-R$ ears are not eatsform.
 $real differentiable.$

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION **Cauchy-Riemann Equations** 2. Determine whether the junction &xy + i (x2-y2, is analytte or not. Soln. Let $f(x) = axy + i(x^2 - y^2)$ $u+iv = axy+i(x^2-y^2)$ \Rightarrow $u = a_{2}ey$ and $v = x^{a_{-}}y^{a_{-}}$ Uz = 2y Vr= 2x $u_y = a \mathcal{R}$ Vy = -ay \Rightarrow ux \neq Vy and uy $\neq -V_x$ C C.R equs. are not satesfied. Hence fizz is not an analytic function. 3. Let f(x) = x3 be analyte. Justify Soin. Let $f(x) = x^3$ utiv = $(x+iy)^3$ $= x^{3} + 3x^{2}(iy) + 3x(iy)^{2} + (iy)^{3}$ $= \alpha^{3} + i 3 \alpha^{2} y - 3 \alpha y^{2} - i y^{3}$

C

2

UNIT-II COMPLEX DIFFERENTIATION

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Cauchy-Riemann Equations $u + iv = [x^3 - 3xy^2] + i [3x^2y - y^3]$ $\Rightarrow u = x^3 - 3xy^2 \quad and \quad v = 3x^9y - y^3$ $u_x = 3x^9 - 3y^9 \qquad V_x = 6xy$ $V_{x} = 6xy$ $u_y = -6xy$ $V_{4} = -3y^{2} + 3z^{2}$ => ux = Vy and uy = - Vx CR egns are Battsfred. Hence f(x) is analytic. A. Find the constants a, b, c if f(x) = set ay + i (bx+ le analyte. Cy) Soln. Let f(x) = x + ay + i(bx + cy)u+iv = x+ay+i(bx+cy)Here u=x+ay and V=bx+cy $4\chi = 1$ Vre = b uy za Vy = C Since fix is analytic. \Rightarrow use = Vy and uy = -Vse i = c a = -b $\therefore a = -b$ and c = 1. 5. Check whether the function w= Sin X is Siniy = loshy analyttc (07) bot. Soln. Let w = f(x) = SPA Xativ = Sin(x+iy)= SPD & COSiy + COS & Sin iy utiv = SPA & COSby + i cos & SPA by $u = 69n \approx \cos hy$ and $V = \cos x 69n hy$ $u_{xe} = \cos x \cosh y$ $V_{xe} = -39n x \sin hy$ $u_y = 69n x \sin hy$ $V_y = \cos x \cos hy$ Hene \Rightarrow $u_{x} = v_{y}$ and $u_{y} = -v_{x}$

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Cauchy-Riemann Equations

CR Eqns core satesfeed. Also the A partial destivatives are continue. Hence the function is analytte. Peoperties of Abalytic function: 1) $\frac{3^{2} d}{3x^{2}} + \frac{3^{2} d}{3y^{2}} = 0$ is known as the laple dimen 9,200 egn fr Property 1: The real and Proaghoury point of an analythe br. w=utiv Satisfes Laplace eqn. Ploop: Let w= f(x) = u+1y be analythe. To prove u and v satteffos laplace egn. $\dot{u}_{\mathcal{D}} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{and} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ Since f(z) is analytic. $\Rightarrow u_{\mathcal{R}} = v_{\mathcal{Y}}$ and $u_{\mathcal{Y}} = -v_{\mathcal{R}} \rightarrow (1)$ Differentiate (1) partially w.r. to reardy, $\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right) = \frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)$ $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 V}{\partial x \partial y} \longrightarrow (2)$ and $\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x} \rightarrow (3)$ $(2)+(3) \Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x}$ > a satterges Laplace eqn. Differentfate (1) postfally w.r. to yand 2 $\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right) = \frac{\partial}{\partial y}\left(\frac{\partial v}{\partial y}\right)$ and $\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right) = -\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right)$

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Cauchy-Riemann Equations

$$\frac{\partial^{2} u}{\partial y \partial x} = \frac{\partial^{2} v}{\partial y^{2}} \qquad \left(\begin{array}{c} \frac{\partial^{2} u}{\partial x \partial y} = -\frac{\partial^{2} v}{\partial x^{2}} \\ \frac{\partial^{2} v}{\partial y^{2}} = \frac{\partial^{2} u}{\partial y \partial x} \\ \left(\frac{\partial^{2} v}{\partial x^{2}} = -\frac{\partial^{2} u}{\partial x \partial y} \\ \frac{\partial^{2} v}{\partial x^{2}} = -\frac{\partial^{2} u}{\partial x \partial y} \\ \frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} = \frac{\partial^{2} u}{\partial y \partial x} - \frac{\partial^{2} u}{\partial x \partial y} \\ \end{array}$$

$$(4) + (5) \Rightarrow \frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} = \frac{\partial^{2} u}{\partial y \partial x} - \frac{\partial^{2} u}{\partial x \partial y} \\ \Rightarrow V \quad \text{Sattestes Laplace eqn.} \\ \text{Hence } u \leq v \quad \text{Sattestes Laplace eqn.} \\ \text{Hence } u \leq v \quad \text{Sattestes Laplace eqn.} \\ \text{Stew An avalytic bunction with a steat \\ \text{Social An avalytic bunction with a steat \\ \Rightarrow u_{x} = Vy \quad \text{and } u_{y} = -Vx \quad \longrightarrow (1) \\ \text{Of ven } u = \text{Constant } = c \quad (Say) \\ \text{Iffouentiate postfally way to $x \leq y, \\ \frac{\partial u}{\partial x} = 0 \quad \text{and } \frac{\partial u}{\partial y} = 0 \\ \text{e., } u_{x} = 0 \quad \text{and } \frac{\partial u}{\partial y} = 0 \\ \text{e., } u_{x} = 0 \quad \text{and } \frac{\partial u}{\partial y} = 0 \\ \text{e., } u_{x} = 0 \quad \text{and } \frac{\partial u}{\partial y} = 0 \\ \text{for } f(x) = \frac{\partial u_{x}}{\partial x} \quad f(x) = 0 \\ \text{for } f(x) = c \\ \text{or } f(x) = c \\ \text{for }$$$