

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Harmonic Conjugate

Construction of configure Harmonic function:
* If the real prott us group, then

$$V = \int \left[-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \right]$$

* If the proof point point V is group, then
 $u = \int \left[\frac{\partial v}{\partial y} dx - \frac{\partial v}{\partial x} dy \right]$
J. Show that $u = y + e^{x} \cos y$ is harmonif and
hence find its conjugate barmonif.
Solo.
Green $u = y + e^{x} \cos y$
 $\frac{\partial u}{\partial x^{2}} = e^{x} \cos y$
 $\frac{\partial u}{\partial x^{2}} = e^{x} \cos y$
 $\frac{\partial^{2} u}{\partial x^{2}} = e^{x} \cos y$
 $\frac{\partial^{2} u}{\partial x^{2}} = e^{x} \cos y$
 $\frac{\partial^{2} u}{\partial x^{2}} = e^{x} \cos y - e^{x} \cos y$
 $\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = e^{x} \cos y$
 $\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = e^{x} \cos y$
 $V = \int \left[-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \right]$
 $= \int \left[-(1 - e^{x} \sin y) dx + e^{x} \cos y dy \right]$
 $= \int -dx + \int e^{x} g \sin y dx + \int e^{x} \cos y dy$
 $= -x + e^{x} g \sin y + e^{x} g \sin y + c$
 $V = 2e^{x} g \sin y - x + c$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Harmonic Conjugate

5]. Show that
$$u = \cos x \cosh y$$
 is bornood.
Find its conjugate bornood.
Solon.
(Freen $u = \cos x \cosh y$
 $\frac{\partial u}{\partial x} = -\sin x \cosh y$
 $\frac{\partial u}{\partial x^2} = -\cos x \cosh y$
 $\frac{\partial^2 u}{\partial y^2} = \cos x \cosh y$
 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\cos x \cosh y + \cos x \cosh y$
Hence u satisfies laplace eqn.
 $\therefore u$ is bornood.
Now $v = \int [-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy]$
 $= \int [-\cos x \sinh y dx - \sinh x \sinh y du + c$
 $v = -2 \sinh x \sinh y + c$
5]. Frome that $u = x^3 - 3xy^2 + 3x^2 - 3y^2$
 $\frac{\partial u}{\partial x} = -3x^2 - 3y^2 + 6x$
 $\frac{\partial^2 u}{\partial y^2} = -\delta x - 6$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Harmonic Conjugate

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x + 6 - 6x - 6$ Hence a satisfies laplace eqn. :. le 98 barmonal. NOW, $V = \int \left[-\frac{\partial u}{\partial y} \, dx + \frac{\partial u}{\partial x} \, dy \right]$ $= \int \left[-(-6xy - 6y)dx + (3x^2 - 3y^2 + 6x)dy \right]$ $= \int (6xy + 6y) dx + (3x^2 - 3y^2 + 6x) dy$ = $6x^2y + 6xy + 3x^2y - \frac{3y^3}{3} + 6xy$ V = 6x²y + 12xy - y³+c 1 · .