

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Conformal mapping

STE

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Conformal mapping

Find the coffical point of the transform J. $\omega = x + \frac{1}{z}$ Soln. arven w= x+ 1/x $\frac{d\omega}{dx} = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$ $\frac{dx}{d\omega} = \frac{x^2}{\sqrt{2}}$ Now $\frac{dw}{dx} = 0 \Rightarrow \frac{x^{a}-1}{x^{a}} = 0$ $\frac{2}{x^2} = 1$ スニナリ and $\frac{dx}{dw} = 0 \Rightarrow \frac{x^2}{x^{2}} = 0 \Rightarrow x^{2} = 0$ x = 0The off-fical poppies are o, ±1. E]. Find the countries point of $w^2 = (z - \alpha)(z - \beta)$ Soln. (free $w^{a} = (z - \alpha) (z - \beta)$ Differentiate wir to Z, $2w \frac{dw}{dx} = (Z - \alpha)(1) + (Z - \beta)(1)$ $=(z-\alpha)+(z-\beta)$ $\frac{d\omega}{dz} = \frac{2z - (\alpha + \beta)}{2\omega}$ and $\frac{dx}{dw} = \frac{2w}{2x - (\alpha + B)}$ Now $\frac{d\omega}{dz} = 0 \Rightarrow \frac{2z - (\alpha + \beta)}{2\omega} = 0$ $az = \alpha + \beta$ $x = \frac{\alpha + \beta}{\vartheta}$

23MAT102-Complex Analysis and Laplace Transforms Dr.G.NANDINI /AP/MATHS

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Conformal mapping

and
$$\frac{dx}{dw} = 0 \Rightarrow \frac{gw}{gx}$$
. (An p)
 $gw = 0$
 $w = 0$
 $\sqrt{(x - x)(x - p)} = 0$
 $x = x$ and $x = p$
 $yw = x^{4} + 1$
Now, $\frac{dw}{dx} = 4x^{3} \Rightarrow \frac{dw}{dx} = 0 \Rightarrow 4x^{3} = 0$
and $\frac{dx}{dw} = -\frac{1}{4x^{3}} = 0$, which is not
possible
 \therefore The best field point of $w = gin x$
 $go = x^{4} + 1$
Now $\frac{dw}{dx} = -\frac{1}{4x^{3}} = 0$, which is not
 $yo = y^{4} + x^{3} = 0$
 $x = x^{4} + x^{3} = 0$, which is not
 $yo = y^{4} + x^{3} = 0$
 $x = 0$
 $yo = gin x$
 $\frac{dw}{dx} = \cos x \Rightarrow \frac{dw}{dx} = 0$
 $x = (\cos^{-1}(0))$
 $x = \pm (gn - 1)\frac{\pi}{2}$, where $n = 1, 2, 3, -1$
and $\frac{dx}{dw} = 0 \Rightarrow \frac{1}{\cos x} = 0$, which is not
 $yo = x^{4} + x^{4}$
 $yo = y^{4} + x^{4}$

(An Autonomous Institution) Coimbatore-641035.

UNIT-II COMPLEX DIFFERENTIATION

Conformal mapping

A point z=a is said to be freed point of a mapping w= f(x) if its image under fix) is cheef. \dot{u}_{y} , f(x) = xFind the invariant points of $\omega = \frac{1+z}{1-z}$ I Soln. Given $w = \frac{1+\chi}{1-\chi}$ The prvariant points are, $x = \frac{H+\chi}{1-\chi} \quad (:: w=f(\chi) = \chi)$ X + 1 = (x - 1)XZ-2=1+Z x-x2-1-x=0 - z=1 =0 J2 = -1 $\int \frac{\mathbf{i}}{\mathbf{r}_{ij}} d\mathbf{r}_{ij} = \pm \int \frac{\mathbf{i}}{\mathbf{r}_{ij}} d\mathbf{r}_{ij}$ 2]. Find the fixed points of w= Soln. Cives $w = \frac{RT+6}{T+7}$ The fixed points are, $a = \frac{a_{z+6}}{z+7}$ X(z+7) = az+6x2+72-22-6=0 z2+5z-6=0 (7+1)(7+6) = 0X = 1. - 6Hu io= 1/2