EVALUATE: SINCE CONTRACT (An Autonomous Institution)
Combatore-641035.
UNIT-III PARTIAL DIFFERENTIAL EQUATIONS Solution of First Order Partial Differential Equations
Solution of First Order Partial Differential Equations
Solution of First Order Partial Differential Equations
A FRENTIAL EQUATIONS Solution of First Order Partial Differential Equations
A FRENTIAL detEnerthal Equations are of the
proof deepeed. Is said to be Finears; otherword see
R is said to be non - Isbnear.
Solutional TYPEs:
TYPE 1:
$$f(E, q) = 0$$

TYPE 2: $X = bx + q.y + f(E, q) [classical second
TYPE 3: $f(X, E, q) = 0$
TYPE 4: $f_1(x, p) = f_2(y, q)$
TYPE 4: $f_1(x, p) = f_2(y, q)$
TYPE 4: $f_2(x, q) = 0$
TYPE 4: $f_1(x, p) = f_2(y, q)$
TyPE 5: $P(E, q) = 0$
TYPE 4: $f_2(x, q) = 0$
TYPE 7: $P(E, q) = 0$
TYPE 8: $P(x, q) = 0$
TYPE 9: $P(x, q) = 0$
Solve $P + q = P(q) \rightarrow CU$
Solve $P + q = p(q) \rightarrow$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS Solution of First Order Partial Differential Equations Subs. the above values 910 (1), we get a+b=aba = ab - b $a = b(a - 1) \Rightarrow b = \frac{a}{a - 1}$ The complete entegral fs, $z = ax + \left(\frac{q}{a-1}\right)y + c \rightarrow (3)$ Sangulai Integral: dats. (3) parthally ou.r. + a and c and equal to seeo. $\frac{\partial x}{\partial a} = x + \left[\frac{(a-1)(1) - a(1)}{(a-1)^2} \right] y = 0$ $\frac{\partial z}{\partial t} = i \neq 0 \quad (P \cup P) = i \neq 0 \quad (P \cup P) = i \neq 0$ 8C There is no singular Integral. General Integral: put $c = \phi(a)$ in (3) $z = az + \left(\frac{a}{a-1}\right)y + \phi(a) \rightarrow (4)$ 196. (4) partfally w.r. t ca $\frac{\partial x}{\partial a} = x + \begin{bmatrix} a - y (i) - a(i) \end{bmatrix} y + \phi'(a) = 0 \longrightarrow (5)$ Elementate (a) b/w (4) and (5>, we get the general solution. EJ. Solve $\sqrt{P} + \sqrt{q} = 1$ $\sqrt{P} + \sqrt{q} =) \longrightarrow (1)$ Let z = ax + by + CSoln :

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS Solution of First Order Partial Differential Equations complete Integral: $\frac{\partial x}{\partial x} = a \Rightarrow P = a$ $\frac{\partial x}{\partial y} = b \Rightarrow q = b$ $\frac{\partial x}{\partial y} = b \Rightarrow q = b$ Subs. the above values qn(1), we get $\sqrt{q} + \sqrt{b} = 1$ $\sqrt{b} = 1 - \sqrt{a}$ $b = (1 - \sqrt{a})^2$ The complete integral B, $\chi = \alpha \chi + (1 - \sqrt{\alpha})^2 y + c \rightarrow (2)$ $\frac{\partial x}{\partial a} = \mathbf{x} + 2(1 - \sqrt{a})\left(\frac{-1}{2\sqrt{a}}\right) \mathbf{y} = 0$ Singular Integral: $\frac{\partial x}{\partial c} = i \neq 0$ Dr = 1 = 0 Dr = 1 = 0 There is no singular integral. Ciencial Integral: Fut c= $\phi(a)$ gn (2) $x = ax + (1 - \sqrt{a})^{2}y + \phi(a) \longrightarrow (3)$ partfally w.r. t'a' $\frac{\partial z}{\partial a} = g + 2(1 - \sqrt{a})\left(\frac{-1}{2\sqrt{a}}\right)y + \phi'(a) = 0 \rightarrow (4)$ Ekiminate 'a' blue (3) and (4), we get the general so Integral. Hw