

EXAMPLE CONSTITUTION
(An Autonomous Institution)
Combatore-641035.
UNIT-III PARTIAL DIFFERENTIAL EQUATIONS Solution of First Order Partial Differential Equations

$$z = \int (K + x)^{2} dx + \int (y - K)^{2} dy$$

$$= \frac{(K + x)^{3}}{3} + \frac{(y - K)^{3}}{3} + C, \quad which se + ke$$
(complete Integral of
 $x = \int (K + x)^{2} dx + \int (y - K)^{2} dy$

$$= \frac{(K + x)^{3}}{3} + \frac{(y - K)^{3}}{3} + C, \quad which se + ke$$
(complete Integral of
 $x \neq - yq = y^{2} - x^{2}$
 $gold:$
 Gv_{2} , $x \neq + x^{2} = y^{2} + yq = k$ (a constant)
 $now \quad x \neq + x^{2} = k$
 $y = K - x^{2}$
 $p = \frac{K - x^{2}}{2}$
 $p = \frac{K}{2} - x$
 $y = K - y^{2}$
 $q = \frac{K - y^{2}}{2}$
 $r = \int (\frac{K}{2} - x) dx + \int (\frac{K}{2} - y) dy$
 $x = \int (\frac{K}{2} - x) dx + \int (\frac{K}{2} - y) dy$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log xy - (\frac{x^{2}}{2} + y^{2}) + c \quad which se$
 $= k \log x + y + y = k \quad which se$
 $= k \log x + y + y = k \quad which se$
 $= k \log x + y + y = k \quad which se$
 $= k \log x + y + y = k \quad which se$