PART B

1. Find the Values of ' a ' and ' b ' so that the surfaces $a x^{3}-b y^{2} z=(a+3) x^{2}$ and
$4 x^{2} y-z^{3}=11$ may cut orthogonally at $(2,-1,-3)$.
2. Prove $\overrightarrow{\mathbf{F}}=\left(y^{2} \cos x+z^{3}\right) \overrightarrow{\mathbf{i}}+(2 y \sin x-4) \overrightarrow{\mathbf{j}}+3 x z^{2} \overrightarrow{\mathbf{k}} \quad$ is irrotational and find its scalar potential φ.
3. Show that $\overrightarrow{\mathbf{F}}=\left(6 x y+z^{3}\right) \overrightarrow{\mathbf{i}}+\left(3 x^{2}-z\right) \overrightarrow{\mathbf{j}}+\left(3 x z^{2}-y\right) \overrightarrow{\mathbf{k}}$ is Irrotational vector and the scalar potential function ϕ Such that $\overrightarrow{\mathbf{F}}=\nabla \varphi$.
4. Find the constants a,b and c so that $\overrightarrow{\mathbf{F}}$ may be irrotational Where $\vec{F}=\left(a x y+b z^{3}\right) \vec{i}+\left(3 x^{2}-c z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ and for these values of a, b, c find the scalar potential of $\overrightarrow{\mathbf{F}}$.
5. If $\overrightarrow{\mathbf{F}}=\left(3 \mathbf{x}^{2}+6 y\right) \overrightarrow{\mathbf{i}}+14 y z \overrightarrow{\mathbf{j}}+20 x z^{2} \overrightarrow{\mathbf{k}}$,evaluate $\int_{C} F \cdot \overline{\mathrm{dr}}$ from $(\mathbf{0}, 0,0)$ to $(\mathbf{1}, \mathbf{1 , 1})$ over the curve $x=t, y=t^{2}, z=t^{3}$.
6. Find the work done when a force $\vec{F}=(y+3) \vec{i}+x z \vec{j}+(y z-x) \vec{k}$, moves a particle from $(0,0,0)$ to $(2,1,1)$ along the curve $x=2 t^{2}, y=t, z=t^{3}$.
7. Evaluate $\iint_{S} \vec{F} \cdot \overrightarrow{n d s}$ where $\overrightarrow{\mathbf{F}}=18 \vec{i} \vec{i}-12 \overrightarrow{\mathbf{j}}+3 y \vec{k}$ as S is the part of the plane $2 x+3 y+6 z=12 \quad$ Which is in the first octant?
8. Verify Green's theorem in the plane for $\int\left(3 x^{2}-8 y^{2}\right) d x-(4 y-6 x y) d y$ where C is The boundary of the region defined by $x=y^{2}, y=x^{2}$.
9. Evaluate by Green's theorem, $\int_{C}\left(e^{-x} \sin y d x+\cos y d x\right) C$ being the rectangle with vertices $(0,0),(\pi, 0),(\pi, \pi / 2)$ and $(0, \pi / 2)$.
10. State Green's theorem. Verify the theorem for $\int_{C}^{f}\left(x y^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ around of C of the region enclosed by $y^{2}=8 x$ and $x=2$.
11. Apply Green's theorem in the plane to evaluate $\int_{C}^{f}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ Where C is the boundary of the region enclosed by $y=\sqrt{x}$ and $y=x^{2}$.
12. Evaluate $\int\left[\left(2 x y-x^{2}\right) d x-\left(x+y^{2}\right) d y\right]$ using Green's theorem where C is the Closed curve formed by $\mathrm{x}=\mathrm{y}^{2}, \mathrm{y}=\mathrm{x}^{\mathbf{2}}$.
13.Verify Green's theorem in the plane for $\int\left(x y+y^{2}\right) d x-x^{2} d y$ where C is the boundary of the common area between $y=x^{2}, y^{2}=x$.
14.Verify Green's theorem in the plane for $\int\left(x y+y^{2}\right) d x-x^{2} d y$ where C is the boundary of the common area between $y=x^{2}, y=x$.
13. Apply Green's theorem in the plane to evaluate $\underset{C}{f}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region defined by $x=0, y=0$ and $x+y=1$.
14. Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ taken Over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
15. Verify Gauss divergence theorem for the function $\vec{F}=y \vec{i}+x \vec{j}+z^{2} \vec{k}$ where S is the surface of the cuboids formed by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=2, \mathrm{z}=0, \mathrm{z}=3$.
16. Verify Gauss divergence theorem for the function $\vec{F}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ over the cube $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
17. Verify divergence theorem for $\vec{F}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ when S is the closed surface of the Cube formed by $x=0, x=1, y=0 y=1, z=0, z=1$
20.Evaluate by Stoke's theorem $\int_{c}^{\vec{F}} . d \vec{r}$ where $\vec{F}=\sin z \bar{i}-\cos x \vec{j}+\sin y \mathbf{k}$ where C is the boundary of the common area between $y=x^{2}, y=x$.
18. Verify Stokes's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}-2 x y \dot{j}$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.
22.Verify Stoke's theorem for $\vec{F}=(y-z+2) \hat{i}+(y z+4) \hat{\mathbf{j}}-x z \hat{k}$ over the open surfaces of the cube $x=0, y=0, z=0, x=1, y=1, z=1$ not included in the XOY plane.
19. Verify Stoke's theorem for a vector defined by $\vec{F}=\left(x^{2}-y^{2}\right) \bar{i}+2 x y \bar{j}$ in the rectangular region in the XOY plane obtained by the lines $\mathbf{x}=\mathbf{0}, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathbf{0}$ and $\mathrm{y}=\mathrm{b}$.
