PART A

1. If $\phi=x^{2}+y^{2}+z^{2}$, find ∇_{ϕ} at $(\mathbf{1}, 1,-\mathbf{1})$

Given, $\phi=x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
There fore $\nabla \phi=i \frac{\partial \phi}{\partial x}+j \frac{\partial \phi}{\partial y}+\vec{k} \frac{\partial \phi}{\partial z} \quad \cdots--\cdots--$
From (i), $\frac{\partial \phi}{\partial \mathrm{x}}=2 \mathrm{x} ; \frac{\partial \phi}{\partial \mathrm{y}}=2 \mathrm{y} ; \frac{\partial \phi}{\partial \mathrm{z}}=2 \mathrm{z}$
Sub (iii) in (i), we get

$$
\nabla \phi=\vec{i}(2 x)+\vec{j}(2 y)+\vec{k}(2 z)
$$

There fore, $(\nabla \phi)_{\text {at }(1,1,-1)}=2 \overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-2 \overrightarrow{\mathbf{k}}$
2. Find grad r^{n}, where $r=|\vec{r}|$ and $\vec{r}=\overrightarrow{\mathbf{i}}+y \dot{j}+z \vec{k}$

Given, $\overrightarrow{\mathbf{r}}=\mathbf{x i}+y \mathbf{j}+z \overrightarrow{\mathbf{k}}$

$$
\begin{align*}
&|\overrightarrow{\mathbf{r}}|= r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& r^{2}=x^{2}+y^{2}+z^{2} \tag{i}
\end{align*}
$$

Diff (i) partially w.r.t ' x '

$$
\begin{aligned}
& 2 r \frac{\partial r}{\partial x}=2 x \\
& \Rightarrow \frac{\partial r}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{r}} \\
& \frac{\partial r}{\partial y}=\frac{\mathrm{y}}{\mathrm{r}} \text { and } \frac{\partial \mathrm{r}}{\partial \mathrm{z}}=\frac{\mathrm{z}}{\mathrm{r}} \\
& \therefore \operatorname{gradr}^{\mathbf{n}}=\nabla \mathbf{r}^{\mathbf{n}} \\
& =\sum \vec{i} \frac{\partial}{\partial \mathbf{x}}\left(\mathbf{r}^{\mathbf{n}}\right) \\
& =\sum \frac{\partial}{\partial \mathbf{x}}\left(\mathbf{r}^{\mathbf{n}}\right) \cdot \frac{\partial \mathbf{r}}{\partial \mathbf{x}} \\
& =\overrightarrow{\mathrm{i}} \mathrm{~B}_{\mathrm{n}} \mathrm{r}^{\mathrm{n}-1} \frac{\mathrm{x}}{\mathrm{r}} \\
& =\overrightarrow{\mathrm{i}} . \mathrm{r}^{\mathrm{n}-2} \cdot \mathrm{x} \\
& =n . r^{n-2}[\vec{x}+y \vec{j}+z \vec{k}] \\
& =\mathbf{n} \cdot \mathbf{r}^{\mathbf{n}-2} \overrightarrow{\mathbf{r}}
\end{aligned}
$$

3. Find the unit vector normal to the surface $x^{2}+y^{2}-z=10$ at $(1,1,1)$.

Given $\phi=x^{2}+y^{2}-z=10$

$$
\begin{aligned}
& \nabla \phi=\frac{i}{\partial \phi}+\vec{j}+\frac{\partial \phi}{\partial y}+\vec{k} \frac{\partial \phi}{\partial z} \\
& =2 \overrightarrow{\mathrm{x}}+2 \mathbf{y} \overrightarrow{\mathrm{j}}-\overrightarrow{\mathbf{k}} \\
& \therefore(\nabla \phi)_{\mathbf{a t}(1,1,1)}=2 \overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}} \\
& |\nabla \phi|=\sqrt{4+4+1}=\sqrt{9}=3
\end{aligned}
$$

Unit normal vector $\hat{\mathbf{n}}=\frac{\nabla \phi}{\nabla \phi}=\frac{2 \overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}}{3}$
4. Find the directional derivative of $\phi=x y+y z+x z$ at the point $(1,2,3)$ in the direction $3 \vec{i}+4 \vec{j}+5 \vec{k}$.

Given, $\phi=x y+\mathrm{yz}+\mathrm{xz}$
Let $\overrightarrow{\mathbf{n}}=3 \overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+5 \overrightarrow{\mathbf{k}}$
Directional derivative $=(\nabla \phi) . \hat{n}$

$$
\nabla \phi=\frac{i}{\partial \phi} \frac{\partial \phi}{\partial \mathbf{x}}+\frac{\partial \phi}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}}+\overrightarrow{\partial \phi} \frac{\partial \phi}{\partial z}
$$

From (i), $\frac{\partial \phi}{\partial x}=y+z ; \frac{\partial \phi}{\partial y}=x+z ; \frac{\partial \phi}{\partial z}=y+x$

$$
\begin{aligned}
& \therefore \nabla \phi=(\mathbf{y}+\mathbf{z)} \overrightarrow{\mathbf{i}}+(\mathbf{x}+\mathbf{z}) \overrightarrow{\mathbf{j}}+(\mathbf{y}+\mathbf{x}) \overrightarrow{\mathbf{k}} \\
& \therefore(\nabla \phi) \mathbf{a t}(1,2,3)=\mathbf{5}+\mathbf{5}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}
\end{aligned}
$$

From (ii), we have

$$
\begin{equation*}
\hat{\mathrm{n}}=\frac{\overrightarrow{\mathrm{n}}}{\mid \overrightarrow{\mathrm{n}}}=\frac{3 \overrightarrow{\mathrm{i}}+4 \overrightarrow{\mathrm{j}}+5 \overrightarrow{\mathrm{k}}}{\sqrt{50}} . \tag{iv}
\end{equation*}
$$

\qquad
Sub (iii) and (iv) in (A), we get
Directional derivative $=(\nabla \phi) \cdot \hat{\mathbf{n}}=(5 \overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}) \cdot \frac{3 \overrightarrow{\mathrm{i}}+4 \overrightarrow{\mathrm{j}}+5 \overrightarrow{\mathrm{k}}}{\sqrt{50}}$

$$
=\frac{15+16+15}{\sqrt{25 \times 2}}=\frac{46}{5 \sqrt{2}}
$$

5. In what direction from the point $(1,-1,-2)$ is the directional derivative
of $\phi=x^{3} y^{3} z^{3}$ a maximum? What is the magnitude of this maximum?

Given, $\phi=x^{3} y^{3} \mathbf{z}^{3}$

$$
\begin{equation*}
\nabla \phi=\frac{i}{\partial \phi}+\overline{\mathrm{x}}+\frac{\partial \phi}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial \phi}{\partial z} \tag{i}
\end{equation*}
$$

From (i), $\frac{\partial \phi}{\partial x}=3 x^{2} y^{3} z^{3} ; \frac{\partial \phi}{\partial y}=3 x^{3} y^{2} z^{3} ; \frac{\partial \phi}{\partial z}=3 x^{3} y^{3} z^{2}$

$$
\begin{aligned}
& \therefore \nabla \phi=3 \mathbf{x}^{2} \mathbf{y}^{3} \mathbf{z}^{3} \overrightarrow{\mathbf{i}}+3 \mathbf{x}^{3} \mathbf{y}^{2} \mathbf{z}^{3} \overrightarrow{\mathbf{j}}+3 \mathbf{x}^{3} \mathbf{y}^{3} \mathbf{z}^{2} \overrightarrow{\mathbf{k}} \\
& \therefore(\nabla \phi)_{\mathbf{t}(1,2,3)}=2 \overrightarrow{\mathbf{i}}-\mathbf{2 4 \vec { \mathbf { j } } - 1 2 \vec { \mathbf { k } }}
\end{aligned}
$$

There fore the directional derivative is maximum in the direction $24 \vec{i}-24 \vec{j}-12 \vec{k}$.

Magnitude of this maximum is | $\nabla \phi \mid$

$$
\begin{aligned}
& =\sqrt{(24)^{2}+(-24)^{2}+(-12)^{2}} \\
& =\sqrt{1296}=36
\end{aligned}
$$

6. Find the angle between the normal to the surface $\mathrm{xy}=\mathrm{z}^{2}$ at the points $(1,4,2)$ and ($-3,-3,3$).

Let $\phi=x y-z^{2}$

$$
\begin{equation*}
\therefore \nabla \phi=\overrightarrow{\mathbf{i}}+\mathbf{x} \overrightarrow{\mathbf{j}}-2 \mathbf{z} \overrightarrow{\mathbf{k}} \tag{i}
\end{equation*}
$$

Normal to the surface is $\nabla_{1} \phi$ and $\nabla_{2} \phi$
$\therefore \nabla_{\mathbf{1}} \phi=(\nabla \phi)_{\mathbf{a t}(\mathbf{1}, \mathbf{4}, \mathbf{2})}=\mathbf{4} \overrightarrow{\mathbf{i}}+\overrightarrow{\mathbf{j}}-4 \overrightarrow{\mathbf{k}}$
$\nabla_{2} \phi=(\nabla \phi)_{\mathbf{a t}(-3,-3,3)}=-3 \overrightarrow{\mathbf{i}}-3 \overrightarrow{\mathbf{j}}-6 \overrightarrow{\mathbf{k}}$
$\therefore\left|\nabla_{1} \phi\right|=\sqrt{33} ;\left|\nabla_{2} \phi\right|=\sqrt{54}$
There fore angle between the normal to the surface is,

$$
\begin{aligned}
\cos \theta=\frac{\left(\nabla_{1} \phi\right)\left(\nabla_{2} \phi\right)}{\left|\nabla_{1} \phi\right| \nabla_{2} \phi \mid}= & =\frac{(4 \hat{i}+\vec{j}-4-4) \cdot(-3 \hat{\mathbf{i}}-3 \overrightarrow{\mathbf{j}}-\theta \overrightarrow{\mathbf{k}})}{\sqrt{33} \sqrt{54}} \\
& =\frac{9}{\sqrt{1782}}=\frac{9}{9 \sqrt{22}}=\frac{1}{\sqrt{22}} \\
\therefore \quad \theta & =\cos ^{-1}\left[\frac{1}{\sqrt{22}}\right]
\end{aligned}
$$

7. If ϕ is a scalar point function, then prove that $\operatorname{curl}\left(\operatorname{grad}_{\phi}\right)=\mathbf{0}$.

$$
\begin{aligned}
\operatorname{grad}_{\phi} & =\overrightarrow{\mathrm{i}} \frac{\partial \phi}{\partial \mathrm{x}}+\frac{\overrightarrow{\mathrm{j}}}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial \phi}{\partial z} \\
\operatorname{curl}_{\operatorname{grad}}^{\phi} & =\nabla \mathbf{X}\left[\frac{i \mathrm{i} \phi}{\partial \mathrm{x}}+\overrightarrow{\mathrm{j}} \frac{\partial \phi}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial \phi}{\partial z}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial x}
\end{array}\right| \\
& =\overrightarrow{\mathbf{i}}\left[\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial y \partial z}\right]-\vec{j}\left[\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{2} \phi}{\partial x \partial z}\right]+\vec{k}\left[\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial x \partial y}\right] \\
& =0
\end{aligned}
$$

8. If \vec{A} is a constant vector, prove that $\operatorname{div}_{\vec{A}}=0$.

Let $\overrightarrow{\mathbf{A}}=\mathrm{A}_{1} \overrightarrow{\mathbf{i}}+\mathrm{A}_{2} \overrightarrow{\mathbf{j}}+\mathrm{A}_{3} \overrightarrow{\mathbf{k}}$
Where A_{1}, A_{2}, A_{3} are constants
$\therefore \boldsymbol{\operatorname { d i v }} \overrightarrow{\mathrm{A}}=\nabla \cdot \overrightarrow{\mathrm{A}}$
$=\left(\vec{i} \frac{\partial}{\partial \mathbf{x}}+\overrightarrow{\mathrm{j}} \frac{\partial}{\partial \mathrm{y}}+\overrightarrow{\mathbf{k}} \frac{\partial}{\partial z}\right) \cdot\left(\mathrm{A}_{1} \overline{\mathrm{i}}+\mathrm{A}_{2} \overline{\mathbf{j}}+\mathrm{A}_{3} \overrightarrow{\mathbf{k}}\right)$
$=\frac{\partial \mathbf{A}_{1}}{\partial \mathrm{x}}+\frac{\partial \mathbf{A}_{2}}{\partial y}+\frac{\partial \mathbf{A}_{3}}{\partial z}=\mathbf{0}+\mathbf{0}+\mathbf{0}$
$\operatorname{div} \overrightarrow{\mathrm{A}}=\mathbf{0}$
9. If \vec{A} is a constant vector, prove that $\operatorname{curl} \vec{A}=0$.

Let $\overrightarrow{\mathrm{A}}=\mathrm{A}_{1} \overrightarrow{\mathbf{i}}+\mathrm{A}_{2} \overrightarrow{\mathrm{j}}+\mathrm{A}_{3} \overrightarrow{\mathbf{k}}$
Where A_{1}, A_{2}, A_{3} are constants

$$
\begin{aligned}
\operatorname{curl} \vec{A}=\nabla \mathbf{X ~} \vec{A} & \left.=\left\lvert\, \begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{1} & A_{2} & A_{3}
\end{array}\right.\right] \\
& =\bar{i}\left[\frac{\partial A_{3}}{\partial y}-\frac{\partial A_{2}}{\partial z}\right]-\overline{\mathrm{j}}\left[\frac{\partial A_{3}}{\partial x}-\frac{\partial A_{1}}{\partial z}\right]+\vec{k}\left[\frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y}\right] \\
& =\vec{i}(0-0)-\vec{j}(0-0)+\vec{k}(0-0) \\
\operatorname{curl} \vec{A} & =0
\end{aligned}
$$

10. Determine $f(r)$ so that the vector $f(r) \vec{r}$ is solenoidal.

Since $\overrightarrow{\mathbf{r}}=\mathbf{x} \dot{\mathbf{i}}+\mathbf{y} \vec{j}+z \vec{k}$

$$
\mathbf{f}(\mathbf{r})=x f(r) \vec{i}+y f(r) \dot{\mathbf{j}}+\mathrm{zf}(\mathrm{r}) \overrightarrow{\mathbf{k}}
$$

$\operatorname{div}[\mathbf{f}(\mathbf{r})]=\frac{\partial}{\partial \mathrm{x}}[\mathrm{xf}(\mathrm{r})]+\frac{\partial}{\partial \mathrm{y}}[\mathrm{yf}(\mathrm{r})]+\frac{\partial}{\partial z}[\mathrm{zf}(\mathrm{r})]$

$$
\begin{aligned}
& =f(\mathbf{r})+\mathrm{xf}^{\prime}(\mathbf{r}) \frac{\partial \mathbf{r}}{\partial \mathrm{x}}+\mathrm{yf}^{\prime}(\mathbf{r}) \frac{\partial \mathrm{r}}{\partial \mathrm{y}}+\mathbf{f (r)}+\mathbf{f}(\mathbf{r})+\mathrm{zf} \mathrm{f}^{\prime}(\mathbf{r}) \frac{\partial \mathbf{r}}{\partial \mathrm{z}} \\
& =3 f(r)+f^{\prime}(r)\left[x \frac{\partial r}{\partial x}+y \frac{\partial r}{\partial y}+z \frac{\partial r}{\partial z}\right] \\
& =3 f(\mathbf{r})+\mathbf{f}^{\prime}(\mathbf{r})\left[\mathrm{x} \frac{\mathbf{x}}{\mathbf{r}}+\mathbf{y} \frac{\mathbf{y}}{\mathbf{r}}+\mathbf{z} \frac{\mathbf{z}}{\mathbf{r}}\right] \\
& =3 f(\mathbf{r})+\frac{\mathbf{f}^{\prime}(\mathbf{r})}{\mathbf{r}}\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right] \\
& =3 f(\mathbf{r})+\mathrm{rf}^{\prime}(\mathbf{r})
\end{aligned}
$$

Since $f(r) \vec{r}$ is solenoidal, $\operatorname{div}[f(r) \vec{r}]=0$

$$
\text { ie., } \quad 3 \mathbf{f}(\mathbf{r})+\mathbf{r f}^{\prime}(\mathbf{r})=\mathbf{0}, \begin{aligned}
& \frac{\mathbf{f}^{\prime}(\mathbf{r}}{\mathbf{f}(\mathbf{r})}=\frac{-3}{\mathbf{r}}
\end{aligned}
$$

Integrating w.r.t r, we get

$$
\begin{aligned}
\log f(\mathbf{r}) & =-3 \log \mathbf{r}+\log \mathrm{c} \\
\log f(\mathbf{r}) & =\log \mathrm{cr}^{-3} \\
\mathbf{f}(\mathbf{r}) & =\mathrm{cr}^{-3} \\
\mathbf{f}(\mathbf{r}) & =\frac{\mathbf{c}}{\mathbf{r}^{3}}
\end{aligned}
$$

11. Find the value of ' a ' so that the vector, $\overrightarrow{\mathbf{F}}=(x+3 y) \vec{i}+(y-2 z) \vec{j}+(x+a z) \vec{k}$ is Solenoidal.

Given $\overrightarrow{\mathrm{F}}$ is solenoidal.

$$
\operatorname{div} \overrightarrow{\mathbf{F}}=0
$$

ie., $\quad \nabla . \overrightarrow{\mathrm{F}}=0$
ie., $\quad\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\overrightarrow{\mathbf{k}} \frac{\partial}{\partial z}\right) \cdot[(x+3 y) \vec{i}+(y-2 z) \vec{j}+(x+a z) \vec{k}]=0$
ie., $\frac{\partial}{\partial \mathrm{x}}(\mathrm{x}+3 \mathrm{y})+\frac{\partial}{\partial \mathrm{y}}(\mathrm{y}-2 \mathrm{z})+\frac{\partial}{\partial z}(\mathrm{x}+\mathrm{az})=0 \Rightarrow 1+1+\mathrm{a}=0 \Rightarrow \mathrm{a}=-2$
12.Show that the vector $2 x y \bar{i}+\left(x^{2}+2 y z\right) \vec{j}+\left(y^{2}+1\right) \vec{k}$ is irrotational.

Let $\overrightarrow{\mathbf{F}}=2 x \mathrm{y}_{\mathrm{i}}+\left(\mathrm{x}^{2}+2 y z\right) \vec{j}+\left(y^{2}+1\right) \vec{k}$
A vector $\overrightarrow{\mathbf{F}}$ is said to be irrotational if $\nabla \mathbf{x} \overrightarrow{\mathrm{F}}=\mathbf{0}$
Now, $\quad \nabla \mathbf{X} \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 \mathrm{xy} & \left(\mathrm{x}^{2}+2 \mathrm{yz}\right) & \left(\mathrm{y}^{2}+1\right)\end{array}\right|$

$$
\begin{aligned}
& = \\
& \begin{aligned}
& {\left[\frac{\partial\left(y^{2}+1\right)}{\partial y}-\frac{\partial\left(x^{2}+2 y z\right)}{\partial z}\right]-\vec{j}\left[\frac{\partial\left(y^{2}+1\right)}{\partial x}-\frac{\partial(2 x y)}{\partial z}\right]+\vec{k}\left[\frac{\partial\left(x^{2}+2 y z\right)}{\partial x}-\frac{\partial(2 x y)}{\partial y}\right] } \\
&=\vec{i}(2 y-2 y)-\vec{j}(0-0)+\overrightarrow{\mathbf{k}}(2 x-2 x) \\
& \nabla X \overrightarrow{\mathrm{~F}}=0
\end{aligned}
\end{aligned}
$$

13.Show that the vector $\overrightarrow{\mathbf{F}}=3 y^{4} z^{2 \vec{i}}+4 x^{3} z^{2} \vec{j}-3 x^{2} y^{2} \overrightarrow{\mathbf{k}}$ is solenoidal.

We know that, if $\overrightarrow{\mathrm{F}}$ is solenoidal, we have

$$
\begin{aligned}
& \operatorname{div} \overrightarrow{\mathbf{F}}=\nabla . \overrightarrow{\mathbf{F}} \\
& =\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \cdot\left[3 y^{4} z^{2} \vec{i}+4 x^{3} z^{2} \vec{j}-3 x^{2} y^{2} \overrightarrow{\mathbf{k}}\right] \\
& =\frac{\partial}{\partial x}\left(3 y^{4} z^{2}\right)+\frac{\partial}{\partial y}\left(4 x^{3} z^{2}\right)+\frac{\partial}{\partial z}\left(-3 x^{2} y^{2}\right) \\
& =0+0+0 \\
& \therefore \mathrm{div} \overrightarrow{\mathrm{~F}}=\mathbf{0}
\end{aligned}
$$

Hence $\overrightarrow{\mathrm{F}}$ is solenoidal.
14.Define the line integral.

Let $\overrightarrow{\mathrm{F}}$ be a vector field in space and let AB be a curve described in the sense A to B. Divide the curve $A B$ into n elements $\mathrm{d} \overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{~d}}_{2}, \ldots, \ldots, \mathrm{dr}_{\mathrm{n}}$.
Let $\overrightarrow{F_{1}}, \overrightarrow{F_{2}}, \ldots, \ldots, \cdots, \overrightarrow{\boldsymbol{F}_{n}}$ be the values of this vector at the junction points of the vectors $d \vec{r}_{1}, d \vec{r}_{2}, \ldots \ldots, d_{r_{n}}$, then the sum

$$
\lim _{n \rightarrow \infty} \sum_{A}^{B} \overline{F_{n}} d \vec{r}_{n}=\int_{A}^{B} \vec{F} d \vec{r} \quad \text { is called the line integral. }
$$

If the line integral is along the curve \mathbf{c} then it is denoted by $\int_{c}^{\vec{F} d \vec{r}}$ or $\underset{c}{f \vec{F} d r}$ if \mathbf{c} is a closed curve.
15. Evaluate $\int_{c} \vec{F} d \vec{r}$ along the curve c in $x y$ plane, $y=x^{3}$ from the point $(1,1)$ to $(2,8)$ if $\vec{F}=\left(5 x y-6 x^{2}\right) \vec{i}+(2 y-4 x) \vec{j}$.

Given $\overrightarrow{\mathbf{F}}=\left(5 x y-6 x^{2}\right) \overrightarrow{\mathbf{i}}+(2 y-4 x) \vec{j}, y=x^{3}$
Now, $\quad \vec{r}=x \vec{i}+y \vec{j} ; \quad d \vec{r}=d \vec{i}+d y \vec{j}$
Here $y=x^{3} ; \quad d y=3 x^{2} d x$

$$
\begin{aligned}
\therefore \int_{c} \vec{F} d \vec{r} & =\int_{c}\left[\left(5 x y-6 x^{2}\right) \vec{i}+(2 y-4 x) \vec{j}\right] \cdot[d x \vec{i}+d y \vec{j}] \\
& =\int_{c}\left[\left(5 x y-6 x^{2}\right) d x+(2 y-4 x) d y\right] \\
& =\int_{c}\left[\left(5 x\left(x^{3}\right)-6 x^{2}\right) d x+\left[\left(2 x^{3}-4 x\right) 3 x^{2} d x\right]\right. \\
& =\int_{c}\left(5 x^{4}-6 x^{2}+6 x^{5}-12 x^{3}\right) d x \\
& =x^{5}-2 x^{3}+x^{6}-3 x^{4}
\end{aligned}
$$

There fore $\int_{c} \vec{F} d \vec{r}$ from the point $(1,1)$ to $(2,8)$

$$
\text { ie., } \int_{1}^{2} \vec{F} d \vec{r}=\left[x^{5}-2 x^{3}+x^{6}-3 x^{4}\right]_{1}^{2}=35
$$

16. Define surface integral.

An integral which is evaluated over a surface is called a surface integral.
$\therefore \lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}=1}^{\mathrm{n}} \overrightarrow{\mathbf{F}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathbf{i}}, \mathrm{z}_{\mathbf{i}}\right), \hat{\mathbf{n}}_{\mathbf{i}} \Delta \mathrm{S}_{\mathbf{i}}$ is known as the surface integral.
17. Find $\iint_{s} \vec{r} \vec{d}$, where s is the surface of the tetrahedron whose vertices are $(\mathbf{0 , 0 , 0}),(\mathbf{1 , 0 , 0}),(0,1,0),(0,0,1)$.

By Gauss divergence theorem,

$$
\begin{aligned}
& \iint_{\mathrm{s}} \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{~d}}=\iiint_{\mathrm{v}}(\nabla \cdot \overrightarrow{\mathrm{r}}) \mathrm{dv} \\
& \nabla \cdot \overrightarrow{\mathrm{r}}=\left(\overrightarrow{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}+\overrightarrow{\mathrm{j}} \frac{\partial}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial}{\partial \mathrm{z}}\right) \cdot[\overrightarrow{\mathrm{x}}+\mathrm{y} \overrightarrow{\mathrm{j}}+\mathrm{z} \overrightarrow{\mathrm{k}}]=\quad \mathbf{1 + 1 + 1}=\mathbf{3} \\
& \therefore \iiint_{\mathrm{s}} \mathrm{r} . \overrightarrow{\mathrm{ds}}=\iiint_{\mathrm{v}} 3 \mathrm{dv}=\mathbf{3 v}
\end{aligned}
$$

18. If $\overrightarrow{\mathbf{F}}=\operatorname{curl} \overrightarrow{\mathrm{A}}$, prove $\iint_{\mathrm{s}} \overrightarrow{\mathrm{F}} \hat{\mathrm{A} d s}=0$, for any closed surface S.

By Gauss divergence theorem,

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \hat{n} d s & =\iiint_{V} \nabla \cdot \vec{F} d V=\iiint_{V} d i v(\vec{F}) d v \\
& =\iiint_{V} d i v(\operatorname{curl} \vec{A}) d v=0 \quad[\operatorname{since} \operatorname{div}(\operatorname{curl} \vec{A})=0]
\end{aligned}
$$

19. Define Volume integral.

An integral which can be evaluated over a volume closed by a surface is called a volume integral. Volume integral can be evaluated by triple integration.
ie. $\iiint_{v} f(x, y, z) d v$
20. State Gauss Divergence theorem.

If \vec{F} is a vector point function, finite and differentiable in a region r bounded by a closed surface S, then the surface integral of the normal component of \vec{F} taken over S is equal to the integral of divergence of \vec{F} taken over V.
ie., $\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{V} \nabla \cdot \vec{F} d v$ Where \hat{n} is the unit vector in the positive normal to S .
21. Evaluate $\iint_{S} \vec{r} \cdot \hat{n} d s$, where S is a Closed surface .

By Gauss Divergence theorem, we have

$$
\begin{aligned}
\iint_{S} \vec{r} \cdot \hat{n} d s & =\iiint_{V} \nabla \cdot \vec{r} d v \\
& =\iiint_{V}\left[\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right](x \vec{i}+y \vec{j}+z \vec{k}) d v \\
& =\iiint_{V}\left[\frac{\partial(x)}{\partial x}+\frac{\partial(y)}{\partial y}+\frac{\partial(z)}{\partial z}\right] d v \\
& =\iiint_{V}(1+1+1) d v=3 \iiint_{V} d v=3 V
\end{aligned}
$$

22.. Prove that $\iint_{S} \phi \cdot \hat{n} d s=\iiint_{V} \nabla \cdot \vec{\phi} d V$

By Gauss Divergence theorem, we have $\iint_{S} \vec{F} \cdot \hat{n} d s=\iiint_{V} \nabla \cdot \vec{F} d V$ Let $\overrightarrow{F=\phi \vec{c}}$ where \vec{c} is a constant vector. Then,
$\iint_{S} \vec{\phi} \vec{c} \cdot \hat{n} d s=\iiint_{V} \nabla \cdot(\vec{\phi} \vec{c}) d v$
$\left.\iint_{S}^{\vec{c}} \cdot \overrightarrow{(} \vec{\phi} \hat{n}\right) d s=\iiint_{V} \vec{c} \cdot(\nabla \phi) d v$
Taking \vec{c} outside the integrals, we get
$\vec{c} \cdot \iint_{S} \vec{\phi} \cdot \hat{n} d s=\vec{c} \iiint_{V} \nabla \phi d v$
$\iint_{S} \vec{\phi} \hat{n} d s=\iiint_{V} \nabla \phi d v$
23. Evaluate $\iint_{s} x d y d z+y d z d x+z d x d y$ over the region of radius a.

$$
\iint_{s} x d y d z+y d z d x+z d x d y=\iiint_{V}\left[\frac{\partial(x)}{\partial x}+\frac{\partial(y)}{\partial y}+\frac{\partial(z)}{\partial z}\right] d x d y d z
$$

$$
=\iiint_{V}(1+1+1) d x d y d z
$$

$$
=3 \iiint_{V} d v=3 v
$$

$$
=3\left[\frac{4}{3} \pi u^{3}\right]=4 \pi u^{3}
$$

24. State Green's theorem in the plane

If R is a closed region of the xy-plane bounded by a simple closed curve C and if M and N are continuous derivatives in R, then
$\int M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$ where \mathbf{C} is travelled in the anti-clockwise direction.
25. Using Green's theorem, prove that the area enclosed by a simple closed curve C

$$
\text { is } \frac{1}{2} \int(x d y-y d x) d x d y .
$$

Consider By Green's theorem,
$\int M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
Consider $\frac{1}{2} \int(x d y-y d x) d x d y=\int \frac{x}{2} d y-\frac{y}{2} d x=\int-\frac{y}{2} d x+\frac{x}{2} d y$
[since, $M=-\frac{y}{2} ; ; N=\frac{x}{2}$]
From (1), $\quad \int-\frac{y}{2} d x+\frac{x}{2} d y=\iint_{R}\left[\frac{1}{2}-\left(-\frac{1}{2}\right)\right] d x d y$

$$
=\iint_{R} d x d y=\text { Area bounded by a closed curve 'C' }
$$

26. State Stoke's theorem.

If \vec{F} is any continuous differentiable vector function and S is a surface enclosed by a curve \mathbf{C} then, $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}$ curl $\vec{F} \cdot \hat{n d s}$ where \hat{n} is the unit normal vector at any point of S.
27.Using Stoke's theorem, prove that $\int_{\mathbf{c}}^{\mathbf{r}} \overrightarrow{\vec{r}} \overrightarrow{\mathrm{r}}=\mathbf{0}$ -

$$
\begin{aligned}
& \text { Given, } \int_{\mathbf{c}}^{\vec{r} d \vec{r}} \text { where } \overrightarrow{\mathbf{r}}=\mathbf{x} \vec{i}+y \vec{j}+z \overrightarrow{\mathbf{k}} \\
& \therefore \int_{\mathrm{c}}^{\vec{r} d \vec{r}}=\iint_{\mathrm{s}} \text { currr} \hat{n} \hat{n} \text { ds } \quad[\because \text { by Stoke's theorem] } \\
& =0 \quad\left[\because \operatorname{curl} \overrightarrow{\mathbf{r}}=\nabla \overrightarrow{\mathrm{x}}=\left|\begin{array}{ccc}
\overrightarrow{\mathrm{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial z} \\
\mathrm{x} & \mathbf{y} & \mathrm{z}
\end{array}\right|=0\right]
\end{aligned}
$$

28. Find the constants a,b,c so that, $\overrightarrow{\mathbf{F}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \overrightarrow{\mathrm{i}}+(\mathrm{bx}-3 \mathrm{y}-z) \overrightarrow{\mathrm{j}}+(4 \mathrm{x}+\mathrm{cy}+2 z) \overrightarrow{\mathrm{k}}$ is irrotational.

$$
\begin{aligned}
& \text { Given } \nabla_{\mathbf{x}} \overrightarrow{\mathrm{F}}=\mathbf{0} \\
& \text { ie., }\left|\begin{array}{ccc}
\vec{i} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathbf{x}+2 \mathbf{y}+\mathbf{a z} & \mathrm{bx}-\mathbf{3 y - z} & 4 \mathrm{x}+\mathrm{cy}+2 \mathbf{z}
\end{array}\right|=\mathbf{0} \\
& \Rightarrow \vec{i}\left[\frac{\partial}{\partial y}(4 x+c y+2 z)-\frac{\partial}{\partial z}(b x-3 y-z)\right] \\
& -j\left[\frac{\partial}{\partial x}(4 x+c y+2 z)-\frac{\partial}{\partial z}(x+2 y+a z)\right] \\
& +\vec{k}\left[\frac{\partial}{\partial x}(b x-3 y-z)-\frac{\partial}{\partial y}(x+2 y+a z)\right]=0 \\
& \Rightarrow \vec{i}[\mathbf{c}+1]-\overrightarrow{\mathrm{j}}[4-\mathrm{a}]+\overrightarrow{\mathrm{k}}[\mathbf{b}-2]=\mathbf{0} \overrightarrow{\mathrm{i}}+0 \overrightarrow{\mathbf{j}}+0 \overrightarrow{\mathrm{k}} \\
& \Rightarrow \quad c+1=0 \quad 4-\mathbf{a}=0 \quad b-2=0 \\
& \Rightarrow \quad c=-1 ; \quad a=4 \quad ; \quad b=2
\end{aligned}
$$

29. If $\overrightarrow{\mathbf{F}}=x^{2} \vec{i}+x y^{2} \vec{j}$, evaluate the line integral $\int_{c} \vec{F} d \vec{r}$ from $(0,0)$ to $(\mathbf{1 , 1})$ along the path $\mathrm{y}=\mathrm{x}$.

$$
\begin{gathered}
\text { Given } \begin{array}{c}
\overrightarrow{\mathbf{F}}=x^{2} \overrightarrow{\mathbf{i}}+x^{2} y^{2} \vec{j} \quad, \quad x=y \\
d x=d y \\
\overrightarrow{\mathbf{r}}=x \vec{i}+y \vec{j} \\
d \overrightarrow{\mathbf{r}}=d x \vec{i}+d y \vec{j} \\
\overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=x^{2} d x+x^{2} d y=x^{2} d x+x^{3} d x \quad[\because x=y, d x=d y] \\
=\left(x^{2}+x^{3}\right) d x
\end{array} \\
\int_{c} \vec{F} d \vec{r}=\int_{0}^{1}\left(x^{2}+x^{3}\right) d x=\frac{7}{12}
\end{gathered}
$$

30. What is the greatest rate of increase of $\phi=\mathrm{xyz}^{2}$ at $(\mathbf{1 , 0 , 3})$.

Given $\phi=\mathrm{xyz}^{2}$

$$
\begin{aligned}
\nabla \phi & =\vec{i} \frac{\partial \phi}{\partial \mathbf{x}}+\overrightarrow{\mathrm{j}} \frac{\partial \phi}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial \phi}{\partial \mathrm{z}} \\
& =\overrightarrow{\mathrm{i}}\left(\mathrm{yz}^{2}\right)+\overrightarrow{\mathrm{j}}\left(\mathrm{xz}^{2}\right)+\overrightarrow{\mathrm{k}}(2 \mathrm{xyz}) \\
(\nabla \phi)_{(1,0,3)}= & \overrightarrow{\mathrm{i}}\left(\mathrm{yz}^{2}\right)+\overrightarrow{\mathrm{j}}\left(\mathrm{xz}^{2}\right)+\overrightarrow{\mathbf{k}}(2 \mathrm{xyz})
\end{aligned}
$$

The greatest rate of increase $=|\nabla \phi|=\sqrt{81}=9$ units
31. Using Green's theorem, find the area of a circle of radius r.

We know by Green's theorem,

$$
\text { Area }=\frac{1}{2} \int_{c}(x d y-y d x)
$$

For a circle of radius r, we have $x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
& \text { Put } x=r \cos \theta, y=r \sin \theta \\
& d x=-r \cos \theta d \theta, d y=r \sin \theta d \theta \quad[\theta \text { varies from } 0 \text { to } 2 \pi \text {] }
\end{aligned}
$$

Area $=\frac{1}{2} \int_{0}^{2 \pi}[r \cos \theta r \cos \theta-r \sin \theta(-r \sin \theta)] d \theta$

$$
=\frac{1}{2} \int_{0}^{2 \pi} r^{2} d \theta==\frac{1}{2} r^{2}[\theta]_{0}^{2 \pi}
$$

Area $=\pi r^{2}$ sq.units.
32. If ∇_{ϕ} is solenoidal find $\nabla^{\mathbf{2}} \phi$.

Given $\overrightarrow{\mathbf{r}}=\mathbf{x} \mathbf{i}+\mathbf{y} \overrightarrow{\mathbf{j}}+\mathrm{z} \overrightarrow{\mathbf{k}}$ is solenoidal.

$$
\therefore \nabla \cdot \nabla \phi=\mathbf{0}
$$

But $\nabla^{2} \phi=\nabla \cdot \nabla \phi=0$
33. If $\vec{r}=(x \vec{i}+y \vec{j}+z \vec{k})$, find $\nabla \times \vec{r}$

Given $\vec{r}=(x \vec{i}+y \vec{j}+z \vec{k})$

$$
\nabla \times \vec{r}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial z x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & y & z
\end{array}\right|=\vec{i}(0-0)+\vec{j}(0-0)+\vec{k}(0-0)=\overrightarrow{0}
$$

34. Define Volume integral.

An integral which can be evaluated over a volume closed by a surface is called a volume integral. Volume integral can be evaluated by triple integration. Ie., $\iiint_{v} f(x, y, z) d v$
35. State Gauss Divergence theorem.

If \vec{F} is a vector point function, finite and differentiable in a region r bounded by a closed surface S, then the surface integral of the normal component of \vec{F} taken over S is equal to the integral of divergence of \vec{F} taken over V.
ie., $\iint_{S} \vec{F} \cdot \hat{n} d s=\iiint_{V} \nabla \cdot \vec{F} d v$ Where \hat{n} is the unit vector in the positive normal to S.
36.Evaluate $\iint_{S} \vec{r} \cdot \hat{n} d s$, where S is a Closed surface.

By Gauss Divergence theorem, we have

$$
\begin{aligned}
\iint_{S} \vec{r} \cdot \hat{n} d s & =\iiint_{V} \nabla \cdot \vec{r} d v \\
& =\iiint_{V}\left[\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right](x \vec{i}+y \vec{j}+z \vec{k}) d v \\
& =\iiint_{V}\left[\frac{\partial(x)}{\partial x}+\frac{\partial(y)}{\partial y}+\frac{\partial(z)}{\partial z}\right] d v \\
& =\iiint_{V}(1+1+1) d v=3 \iiint_{V} d v=3 V
\end{aligned}
$$

37. Prove that $\iint_{S} \phi \cdot \hat{n} d s=\iiint_{V} \nabla \cdot \vec{\phi} d V$ By Gauss Divergence theorem, we have

$$
\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{V} \nabla \cdot \vec{F} d V
$$

Let $\overrightarrow{F=\phi \vec{c}}$ where \vec{c} is a constant vector. Then,

$$
\begin{aligned}
& \iint_{S} \vec{\phi} \vec{c} \cdot \hat{n} d s=\iiint_{V} \nabla \cdot(\phi \vec{c}) d v \\
& \iint_{S} \vec{c} \cdot(\vec{\phi} \hat{n}) d s=\iiint_{V} \vec{c} \cdot(\nabla \phi) d v
\end{aligned}
$$

Taking \vec{c} outside the integrals, we get

$$
\begin{aligned}
& \vec{c} \cdot \iint_{S}^{\vec{\phi}} \vec{n} \hat{n} d s=\vec{c} \iiint_{V} \nabla \phi d v \\
& \iint_{S} \vec{\phi} \hat{n} d s=\iiint_{V} \nabla \phi d v
\end{aligned}
$$

38. Evaluate $\iint_{s} x d y d z+y d z d x+z d x d y$ over the region of radius a.

$$
\begin{aligned}
\iint_{s} x d y d z+y d z d x+z d x d y & =\iiint_{V}\left[\frac{\partial(x)}{\partial x}+\frac{\partial(y)}{\partial y}+\frac{\partial(z)}{\partial z}\right] d x d y d z \\
& =\iiint_{V}(1+1+1) d x d y d z \\
& =3 \iiint_{V} d v=3 v \\
& =3\left[\frac{4}{3} \pi \pi^{3}\right]=4 \pi a^{3}
\end{aligned}
$$

39. State Green's theorem in the plane

If R is a closed region of the xy-plane bounded by a simple closed curve C and if M and N are continuous derivatives in R, then
$\int M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$ where \mathbf{C} is travelled in the anticlockwise direction.
40. Using Green's theorem, prove that the area enclosed by a simple closed curve C
is $\frac{1}{2} \int(x d y-y d x) d x d y$.
consider By Green's theorem,
$\int M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$ \qquad
Consider $\frac{1}{2} \int(x d y-y d x) d x d y=\int \frac{x}{2} d y-\frac{y}{2} d x=\int-\frac{y}{2} d x+\frac{x}{2} d y$

$$
\text { [since, } \left.M=-\frac{y}{2} ; ; N=\frac{x}{2}\right]
$$

From (1), $\quad \int-\frac{y}{2} d x+\frac{x}{2} d y=\iint_{R}\left[\frac{1}{2}-\left(-\frac{1}{2}\right)\right] d x d y$

$$
=\iint_{R} d x d y=\text { Area bounded by a closed curve ' } C \text { ' }
$$

41. State Stoke's theorem.

If \vec{F} is any continuous differentiable vector function and S is a surface enclosed by a curve \mathbf{C} then, $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{F} d s$ where \hat{n} is the unit normal vector at any point of S.
42. If $\vec{F}=\left(y^{2} \cos x+z^{2}\right) \vec{i}+(2 y \sin x-4) \vec{j}+3 x z^{2} \vec{k}$, find its scalar potential.

To find ϕ such that $\vec{F}=\operatorname{grad} \phi$

$$
\left(y^{2} \cos x+z^{2}\right) \vec{i}+(2 y \sin x-4) \vec{j}+3 x z^{2} \vec{k}=\vec{i} \frac{\partial \phi}{\partial x}+\vec{j} \frac{\partial \phi}{\partial y}+\vec{k} \frac{\partial \phi}{\partial z}
$$

Integrating the equations partially w.r.to $\mathbf{x}, \mathbf{y}, \mathbf{z}$ respectively.

$$
\begin{aligned}
& \phi=y^{2} \sin x+x z^{3}+f_{1}(y, z) \\
& \phi=y^{2} \sin x-4 y+f_{2}(x, z) \\
& \phi={ }^{2} x z^{3}+f_{3}(y, z
\end{aligned}
$$

Therefore $\phi=y^{2} \sin x+x z^{3}-4 y+c$ is a scalar potential.

