
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Coimbatore - 641035.

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++”
Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Course Code: 23CAT606

Course Name: Java Programming

Unit III: Networking and I/O Package

Topic : Multithreading

Department of Computer Applications

TOPIC INCLUDES:

 Introduction to Thread

 Creation of Thread

 Life cycle of Thread

 Stopping and Blocking a Thread

 Using Thread Methods

 Thread Priority

 Thread Synchronization

 DeadLock

MULTITHREADING

INTRODUCTIONTO THREAD

• Process and Thread are two basic units of Java program
execution.

• Process: A process is a self contained execution
can be seen as a program orenvironment and it

application.

• Thread: It can be called lightweight process
• Thread requires less resources to create and exists in the

process

• Thread shares the process resources

INTRODUCTIONContd.

MULTITHREADING

• Multithreading in java is a process of executing multiple
processes simultaneously.

• A program is divided into two or more subprograms, which can
be implemented at the same time in parallel.

• Multiprocessing and multithreading, both are used to achieve
multitasking.

• Java Multithreading is mostly used in games, animation
etc.

MULTITHREADING Contd.

ADVANTAGE:

 It doesn't block the user

 can perform many operations together so it saves
time.

 Threads are independent so it doesn't affect
other threads

CREATING THREAD

• Threads are implemented in the form of objects.

• The run() and start() are two inbuilt methods which helps
to thread implementation

• The run() method is the heart and soul of any thread

– It makes up the entire body of a thread

• The run() method can be initiating with the help of start()
method.

CREATINGTHREAD Contd.

CREATING THREAD

1. By extending Thread class

By implementing Runnable
interface

CREATINGTHREAD Contd.

1. By Extending Thread class

class Multi extends Thread

{

public void run()

{

System.out.println("thread is running...");

}

public static void main(String args[])

{

Multi t1=new Multi();

t1.start();

}

}

Output: thread is running…

// Extending thread class

// run() method declared

//object initiated

// run() method called through start()

CREATINGTHREAD Contd.

2. By implementing Runnable interface

 Define a class that implements Runnable interface.

 The Runnable interface has only one method, run(), that is to be
defined in the method with the code to be executed by the
thread.

CREATINGTHREAD Contd.

2. By implementing Runnable interface

class Multi3 implements Runnable

{

public void run()

{

System.out.println("thread is running...");

}

public static void main(String args[])

{

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start();

} }

// Implementing Runnable interface

// object initiated for class

// object initiated for thread

Output: thread is running…

LIFE cycle of a thread

• During the life time of a thread, there are many states
it can enter.

• They include:

1. Newborn state

2. Runnable state

3. Running state

4. Blocked state

5. Dead state

LIFE cycle of a thread contd.

LIFE cycle of a thread contd.

Newborn State:

 The thread is born and is said to be in newborn state.

 The thread is not yet scheduled for running.

 At this state, we can do only one of the following:
• Schedule it for running using start() method.

• Kill it using stop() method.

LIFE cycle of a thread contd.

Runnable State:

 The thread is ready for execution

 Waiting for the availability of the processor.

 The thread has joined the queue

LIFE cycle of a thread contd.

Running State:

• Thread is executing

• The processor has given its time to the thread for its
execution.

• The thread runs until it gives up control on its own or
taken over by other threads.

LIFE cycle of a thread contd.

Blocked State:

• A thread is said to be blocked

• It is prevented to entering into the runnable and the running
state.

• This happens when the thread is suspended, sleeping, or waiting in
order to satisfy certain requirements.

• A blocked thread is considered "not runnable" but not dead and
therefore fully qualified to run again.

• This state is achieved when we Invoke suspend() or sleep() or wait()
methods.

LIFE cycle of a thread contd.

Dead State:

• Every thread has a life cycle.

• A running thread ends its life when it has completed executing its
run() method. It is a natural death.

• A thread can be killed in born, or in running, or even in "not
runnable" (blocked) condition.

• It is called premature death.

• This state is achieved when we invoke stop() method or the thread
completes it execution.

Threadmethods
• Thread is a class found in java.lang package.

Method Signature Description

String getName() Retrieves the name of running thread in the current context in

String format

void start()
This method will start a new thread of execution by calling
run() method of Thread/runnable object.

void run() This method is the entry point of the thread. Execution of thread

starts from this method.

void sleep(int sleeptime)
This method suspend the thread for mentioned time duration in
argument (sleeptime in ms)

void yield()
By invoking this method the current thread pause its execution
temporarily and allow other threads to execute.

void join()
This method used to queue up a thread in execution. Once called on
thread, current thread will wait till calling thread completes its execution

boolean isAlive() This method will check if thread is alive or dead

Stopping and blocking

Stopping a thread:

• To stop a thread from running further, we may do so by calling its
stop() method.

• This causes a thread to stop immediately and move it to its
dead state.

• It forces the thread to stop abruptly before its
completion

• It causes premature death.

• To stop a thread we use the following syntax:

thread.stop();

Stopping and blocking

Blocking a Thread:

• A thread can also be temporarily suspended or
blocked from entering into the runnable and
subsequently running state,

1. sleep(t) // blocked for ‘t’ milliseconds

2. suspend() // blocked until resume() method is invoked

3. wait() // blocked until notify () is invoked

Thread priority

• Each thread is assigned a priority, which affects the
order in which it is scheduled for running.

• Java permits us to set the priority of a thread using
the setPriority() method as follows:

ThreadName.setPriority(int Number);

Thread priority contd.

• The intNumber is an integer value to which the thread's
priority is set. The Thread class defines several priority
constants:

1. public static int MIN_PRIORITY = 1

2. public static int NORM_PRIORITY = 5

3. public static int MAX_PRIORITY = 10

• The default setting is NORM_PRIORITY. Most user- level
processes should use NORM_PRIORITY.

Java synchronization

• Generally threads use their own data and methods
provided inside their run() methods.

• But if we wish to use data and methods outside the
thread’s run() method, they may compete for the same
resources and may lead to serious problems.

• Java enables us to overcome this problem using a
technique known as Synchronization.

For ex.: One thread may try to read a record from a file
while another is still writing to the same file.

Java synchronization contd.

• When the method declared as synchronized, Java
creates a "monitor" and hands it over to the thread
that calls the method first time.

synchronized (lock-object)

{

.......... // code here is synchronized

}

Deadlock

• Deadlock describes a situation where two or more
threads are blocked forever, waiting for each other.

• when two or more threads are waiting to gain control on a
resource.

For example, assume that the thread A must access
Method1 before it can release Method2, but the thread B cannot
release Method1 until it gets holds of Method2.

deadlock

1. Herbert Schildt “ The Complete Reference Java 2, 8th edition , Tata McGraw Hill, 2011

2. Ralph Bravaco, Shai Simonson, “Java Programming: From the Ground up Tata McGraw Hill,

2012

3. https://www.javatpoint.com

Reference

http://www.javatpoint.com/

