
DEPARTMENT OF COMPUTER APPLICATIONS

I YEAR II SEM

23CAT606 – Java Programming

UNIT I – Java Fundamentals

Topic 8 : Utilities and Collection

Java Collection Framework hierarchy

2

A collection is a container object that holds a group

of objects, often referred to as elements. The Java

Collections Framework supports three types of

collections, named lists, sets, and maps.

Java Collection Framework hierarchy,

cont.

Set and List are subinterfaces of Collection.

3

The Collection Interface

The Collection interface is for manipulating a

collection of objects.
«interface»

java.util.Collection<E>

+add(e: E): boolean

+addAll(c: Collection<? extends E>):
boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c:
Collection<?>):boolean

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>):
boolean

+retainAll(c: Collection<?>):
boolean

+size(): int

+toArray(): Object[]

+stream(): Stream default

+parallelStream(): Stream default

Adds a new elem ent e to this collection.

Adds all the elem ents in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o .

Returns true if this collection contains all the elements in c .

Returns true if this collection contains no elements.

R emoves the elem ent o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns a stream from this collection (covered in Ch 23).

Returns a parallel stream from this collection (covered in Ch

23).

«interface»

java.util.Iterator<E>
+hasNext(): boolean

+next(): E

+remove(): void

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

«interface»

java.lang.Iterable<E>

+iterator(): Iterator<E>

+forEach(action: Consumer<? super

E>): default void

Returns an iterator for the elements in this collection.

Performs an action for each element in this iterator.

4

The List Interface

5

A list stores elements in a sequential order, and

allows the user to specify where the element is

stored. The user can access the elements by index.

The List Interface, cont.

6

The List Iterator

7

ArrayList and LinkedList

8

The ArrayList class and the LinkedList class are concrete
implementations of the List interface. Which of the two classes you
use depends on your specific needs. If you need to support random
access through an index without inserting or removing elements
from any place other than the end, ArrayList offers the most efficient
collection. If, however, your application requires the insertion or
deletion of elements from any place in the list, you should choose
LinkedList. A list can grow or shrink dynamically. An array is fixed
once it is created. If your application does not require insertion or
deletion of elements, the most efficient data structure is the array.

java.util.ArrayList

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.

Creates an array list f rom an existing collection.

Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()

+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

9

java.util.LinkedList

«interface»
java.util.List<E>

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the object to the head of this list.

Adds the object to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(o: E): void

+addLast(o: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

10

Example: Using ArrayList and

LinkedList

This example creates an array list filled with
numbers, and inserts new elements into the
specified location in the list. The example also
creates a linked list from the array list, inserts and
removes the elements from the list. Finally, the
example traverses the list forward and backward.

Run

11

TestArrayAndLinkedList

The Comparator Interface

12

Sometimes you want to compare the elements of different types. The
elements may not be instances of Comparable or are not

comparable. You can define a comparator to compare these elements.

To do so, define a class that implements the
java.util.Comparator interface. The Comparator interface

has the comparemethod for comparing two objects.

The Comparator Interface

public int compare(Object element1, Object element2)

Returns a negative value if element1 is less than element2, a
positive value if element1 is greater than element2, and zero if they
are equal.

Run

13

TestComparator

GeometricObjectComparator

Other Comparator Examples

RunSortStringIgnoreCase

Run

14

SortStringByLength

The Collections Class

15

The Collections class contains various static methods for operating

on collections and maps, for creating synchronized collection

classes, and for creating read-only collection classes.

The Collections Class UML Diagram

16

Case Study: Multiple Bouncing Balls

RunMultipleBounceBall

Mult ipleBounceBall

javafx.application.Application

Mult ipleBallPane 1 1

-animation: Timeline

+MultipleBallPane()

+play(): void

+pause(): void

+increaseSpeed(): void

+decreaseSpeed(): void

+rateProperty(): DoubleProperty

javafx.scene.layout.Pane

Ball m 1

dx: double

dy: double

+Ball(x: double, y: double,

radius: double, color: Color)

javafx.scene.shape.Circle

17

The Vector and Stack Classes

18

The Java Collections Framework was introduced with
Java 2. Several data structures were supported prior to
Java 2. Among them are the Vector class and the Stack
class. These classes were redesigned to fit into the Java
Collections Framework, but their old-style methods are
retained for compatibility. This section introduces the
Vector class and the Stack class.

The Vector Class

19

In Java 2, Vector is the same as ArrayList, except that
Vector contains the synchronized methods for accessing
and modifying the vector. None of the new collection data
structures introduced so far are synchronized. If
synchronization is required, you can use the synchronized
versions of the collection classes. These classes are
introduced later in the section, “The Collections Class.”

The Vector Class, cont.

20

The Stack Class

The Stack class represents a last-in-first-out

stack of objects. The elements are accessed only

from the top of the stack. You can retrieve,

insert, or remove an element from the top of the

stack.
java.util .Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E) : E

+search(o: Object) : int

java.util .Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

21

Queues and Priority Queues

22

A queue is a first-in/first-out data structure. Elements are

appended to the end of the queue and are removed from the

beginning of the queue. In a priority queue, elements are

assigned priorities. When accessing elements, the element

with the highest priority is removed first.

The Queue Interface

23

Using LinkedList for Queue

24

The PriorityQueue Class

Run

25

PriorityQueueDemo

Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

Run

26

Evaluate Expression

