
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE
III YEAR IV SEM

UNIT I – PROBLEM SOLVING

TOPIC – Problem Formulation

Setup
• Perception/action cycle [board]

• Goal-based agent: find a sequence of actions to achieve a goal
– Search, then execute

• The methods in this chapter are appropriate for problems for
which the environment is observable, discrete,
determininistic.[which means?]

� 2

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

3

4

Example Problems
• Toy problems

– Illustrate/test various problem-solving methods
– Concise, exact description
– Can be used to compare performance
– Examples: 8-puzzle, 8-queens problem, Cryptarithmetic, Vacuum world,

Missionaries and cannibals, simple route finding

• Real-world problem
– More difficult
– No single, agreed-upon specification (state, successor function,

edgecost)
– Examples: Route finding, VLSI layout, Robot navigation, Assembly

sequencing (read 3.2.2 about complexities)

5

Toy Problems
The vacuum world

• The vacuum world
– The world has only two

locations

– Each location may or
may not contain dirt

– The agent may be in one
location or the other

– 8 possible world states

– Three possible actions:
Left, Right, Suck

– Goal: clean up all the
dirt

1 2

43

5 6

7 8

6

Toy Problems
The vacuum world

– States: one of the 8 states given earlier
– Operators: move left, move right, suck
– Goal test: no dirt left in any square
– Path cost: each action costs one

S

R

L

S

SS

R

R

R

L

L

L

7

Missionaries and cannibals
• Missionaries and cannibals

– Three missionaries and three
cannibals want to cross a river

– There is a boat that can hold two
people

– Cross the river, but make sure that
the missionaries are not
outnumbered by the cannibals on
either bank

• Lots of abstraction
– Crocodiles in the river, the weather

and so on
– Only the endpoints of the crossing

are important, etc.

8

Missionaries and cannibals

• http://www.novelgames.com/gametips/details.php?id=29

• [Problem formulation]

http://www.novelgames.com/gametips/details.php?id=29#http://www.novelgames.com/gametips/details.php?id=29

9

Real-world problems
• Route finding

– Defined in terms of locations and transitions along links between them
– Applications: routing in computer networks, automated travel advisory

systems, airline travel planning systems
• Touring and traveling salesperson problems

– “Visit every city on the map at least once and end in Bucharest”
– Needs information about the visited cities
– Goal: Find the shortest tour that visits all cities
– NP-hard, but a lot of effort has been spent on improving the

capabilities of TSP algorithms
– Applications: planning movements of automatic circuit board drills

10

Real-world problems
• VLSI layout

– Place cells on a chip so they don’t overlap and there is
room for connecting wires to be placed between the cells

• Robot navigation
– Generalization of the route finding problem

• No discrete set of routes
• Robot can move in a continuous space
• Infinite set of possible actions and states

• Assembly sequencing
– Automatic assembly of complex objects
– The problem is to find an order in which to assemble the

parts of some object

11

What is a Solution?
• A sequence of actions (a plan) which leads from the initial state

into a goal state (e.g., the sequence of actions that gets the
missionaries safely across the river)

• Or sometimes just the goal state (e.g., infer molecular structure
from mass spectrographic data)

12

Our Current Framework
• Backtracking state-space search

• Others:
– Constraint-based search

– Optimization search

– Adversarial search

State Space

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

13

Search Trees
(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

14

States vs. Nodes
• []

15

16

Generalized Search
Start by adding the initial state to a

list, called fringe
Loop

If there are no states left then fail
Otherwise remove a node from fringe, cur
If it’s a goal state return it
Otherwise expand it and add the resulting nodes to fringe

Expand a node = generate its successors

General Tree Search
• Code on course webpage

• Style of code: simple, for class
– Two versions; one simpler than the other. These slides: the simpler

one.
• The simpler one requires input for the successors, and is only good for

comparing depthfirst and breadthfirst search, and treesearch vs.
graphsearch.

• Look at it; if it isn’t trivial to you, get up to speed before the next class
(there is a link to a Python tutorial in the syllabus)

• The AIMA website has fully object-oriented code (Python, Java,
etc)

17

18

def treesearch (qfun,fringe):

while len(fringe) > 0:

cur = fringe[0]

fringe = fringe[1:]

if goalp(cur): return cur

fringe = qfun(makeNodes(cur,successors(cur)),fringe)

return []

Blind Search Strategies
�[breadth-first, uniform-cost, and depth-first search; evaluation

criteria on next 3 slides; then iterative deepening search.]

19

State Space

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

20

21

Evaluation Criteria
• Space

– Maximum number of nodes in memory at one time

• Optimality
– Does it always find a least-cost solution?

– Cost considered: sum of the edgecosts of the path to the goal (the g-
val)

22

Evaluation Criteria
• Completeness

– Does it find a solution when one exists

• Time
– The number of nodes generated during search

23

Time and Space Complexity
Measured in Terms of

• b – maximum branching factor of the

search tree; we will assume b is finite

• d – depth of the shallowest goal

• m – maximum depth of any path in the state space (may be infinite)

24

def graphsearch (qfun,fringe):

expanded = {}

while len(fringe) > 0:

cur = fringe[0]

fringe = fringe[1:]

if goalp(cur): return cur

if not (expanded.has_key(cur.state) and\

expanded[cur.state].gval <= cur.gval):

expanded[cur.state] = cur

fringe = qfun(makeNodes(cur,successors(cur)),fringe)

return []

25

def depthLimSearch (fringe,depthlim):

while len(fringe) > 0:

cur = fringe[0]

fringe = fringe[1:]

if goalp(cur): return cur

if cur.depth <= depthlim:

fringe = makeNodes(cur,successors(cur)) + fringe

return []

26

def depthLimSearch (fringe,depthlim):

while len(fringe) > 0:

cur = fringe[0]

fringe = fringe[1:]

if goalp(cur): return cur

if cur.depth <= depthlim:

fringe = makeNodes(cur,successors(cur)) + fringe

return []

def iterativeDeepening(start):

result = []

depthlim = 1

startnode = Node(start)

while not result:

result = depthLimSearch([startnode],depthlim)

depthlim = depthlim + 1

return result

Wrap Up
• Chapter 3.1-4

• Code under resources on the course webpage: simplesearch.py

• Notes (in response to questions asked in the past)
– The book writes separate code for breadth-first search, i.e., they don’t call

treesearch as in the class code. Their version applies the goal test to a
node when it is first generated, before it is added to the fringe. This can
save time and space:� In the worst case, when the goal is on the right
frontier of the search tree, my version of breadth-first search generates,
and adds to the fringe, �an extra level of nodes than their version does.
In figure 3.21 (time and space), breadth-first search is O(b^d) and uniform-
cost search is O(b^(d+1)) if all edge-costs are equal.�

– For the exam, I won’t be concerned with this complexity distinction. We
are focusing on larger differences, such as whether the complexity is linear
versus exponential and whether the exponent is d or m (which may be quite
substantially different).

– However (please see the following slide) …
27

Wrap Up
– However, we are focusing on the behavior of the algorithms
– Possible exam questions are:

• Suppose we change tree search (or graph search) so that it applies the goal test to
a node when it is first generated, before it is added to the fringe, and return
immediately if the test is positive.

• Is breadth-first search, uniform-cost search, (or another algorithm) still optimal?
If so, explain why and list any conditions. If not, give a (small) counter example.

• As far as depth-first-search, there is a difference in the
implementation from simplesearch.py and search.py: simplesearch.py
(and these lecture notes) adds the results of the successor function to
the fringe in one step; search.py adds them one by one. Specifically
for depth-first search, this will affect whether the search proceeds
down the left or the right of the tree. For the exam, and in class, I’ll
be clear about this difference if it comes up.

• From a theoretical point of view, in this framework for AI problem
solving, the order of the successors is ignored, and not part of the
distinctions between the algorithms. That is, there is no metric by
which one successor can be judged better than another one.

28

THANK YOU

29

