SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE
1l YEAR IV SEM

UNIT | - PROBLEM SOLVING

TOPIC — Constraint Satisfaction Problems

Vo

Constraint satisfaction problems (CSPs)

|

CSP:

state is defined by variables X; with values from domain D,

goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

Allows useful general-purpose algorithms with more power
than standard search algorithms

‘ap Example: Map-Coloring

Northern
Territory
Ques=nsland

South
Australia
New South Wales
Victoria

Tasmania

Westarn
Australia

Variables WA, NT, Q, NSW, V, SA, T
Domains D; = {red,green,blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT

‘ap Example: Map-Coloring

7Y

Tasrn"a

Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red,NSW =
green,V = red,SA = blue, T = green

*ap Constraint graph
|
Binary CSP: each constraint relates two variables

Constraint graph: nodes are variables, arcs are constraints

Westarn
Australia

\ ey | ®‘:"°@

South
Australia
New South Wales
Victoria

(V)

JE
L\J‘A.;-.f'{

:

"sp Varieties of CSPs 5

|
Discrete variables
finite domains:
n variables, domain size d 2 O(d ") complete assignments
e.g., 3-SAT (NP-complete)
infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job:
Startjob, + 5 < Startjob,

Continuous variables
e.g., start/end times for Hubble Space Telescope observations
linear constraints solvable in polynomial time by linear programming
6

"ap Varieties of constraints -

|
Unary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,
e.g., SA # WA

Higher-order constraints involve 3 or more
variables,

e.g., SA # WA # NT

a Example: Cryptarithmetic

&*

T Wo Fr(TJ) (U A) {0
+ T WO
FOUR
8w &
Variables: FTUWR O X; X5 X5
Domains: {0,1,2,3,4,5,6,7,8,9} 10,1}

Constraints: Alldiff (F,T,U W,R,0O)
O+0=R~+10- X,
X, +W+W=U+10- X,
X, +T+T=0+10-X;
X,=F T#0, F£ 0 5

Real-world CSPs 9

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Transportation scheduling
Factory scheduling

Notice that many real-world problems involve real-
valued variables

& JE
(3 = L

* Standard search formulation o
| &L

Let’s try the standard search formulation. ®‘°®
@,

We need:

e Initial state: none of the variables has a value (color)

e Successor state: one of the variables without a value will get some value.
e Goal: all variables have a valu none of the constraints is violated.

Navers| @B ©® @ @ NxD
..................... [NxD]x[(N-1)xD]
WA WA WA NT
NT NT NT \/ WA
Equal! N! x DN

v 10
There are N! x DN nodes in the tree but only DN distinct states??

o

W Backtracking (Depth-First) search

e Special property of CSPs: They are commutative: NT WA
This means: the order in which we assign variables \ya = T
does not matter.

e Better search tree: First order variables, then assign them values one-by-one.
(v)

o
© @‘@
S
D O
®
DA2

DN
11

Backtracking example

o

12

Backtracking example

S
......

14

Backtracking example

SR
ST

15

mﬂ Improving backtracking efficiency
|

General-purpose methods can give huge
gains in speed:
Which variable should be assigned next?
In what order should its values be tried?
Can we detect inevitable failure early?

We'll discuss heuristics for all these questions in
the following.

16

Which variable should be assigned next? JE

&
* ->minimum remaining values heuristic
I

Most constrained variable:
choose the variable with the fewest leaal values

o — e R

a.k.a. minimum remaining values (MRV)
heuristic

Picks a variable which will cause failure as
soon as possible, allowing the treeto be v

Vvnicn variabie snould be assignhed next(in;

mﬂ > degree heuristic
I

Tie-breaker among most constrained

variables

O—)
@‘@'eo@
@

Most constrain/ng variable:
choose the variable with the most constraints on

ramainina variahlaec fmnct adneac in aranh)

&—L:_" H[:——"

18

INn what ordaer shouid Its values pe triedrs

- =
-
Sor A

o > -
-q > least constraining value heuristic
|

WWWWW
Australi

Given a variable, choose the least
constraining value:

the one that rules out the fewest values in the

| “ IE Allows 1 value for SA
l . =/ “;.% Allows O values for SA

Leaves maximal flexibility for a solution.

I ArmvAlhimmirm~ FlaeAaceAa AL IvIicaEI A~ maslo A~ 1 O0ON0N

19

'iq Rationale for MRV, DH, LCV

|

In all cases we want to enter the most promising branch,
but we also want to detect inevitable failure as soon as
possible.

MRV+DH: the variable that is most likely to cause failure in
a branch is assigned first. E.g X1-X2-X3, values is 0,1,
neighbors cannot be the same.

LCV: tries to avoid failure by assigning values that leave

maximal flexibility for the remaining variables.
20

Can we detect inevitable failure early? JE
- forward checking

|
Idea:

Keep track of remaining legal values for unassigned variables
that are connected to current variable.
Terminate search when any variable has no legal values

i—L]: ()
(@)
o B
WA NT (] NSW v SA T @‘@
(EerEErEErE RO E B E B EED | &

@

21

*ap Forward checking

|

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSEN == @

(@)
2

WA NT Q NSW v SA T @‘@
Mo EEeEEeE[EPEEEE[EEE[ED | (V)

(]| TEETEErEE T E] T E[ET] @,

22

*ap Forward checking

|

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Ho—eio—ed o
WA NT Q NSW v SA T @"‘
I Ir N IreT iIrey iren iren ir e 1 @‘®
(amm] " EE- E[E-EE-N] B8N O

[— | B[m[Ee] 11 ™M

23

*ap Forward checking

|

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S SSha Sl S~

(v)
"
WA NT Q NSW v SA T @
M EErEErTE e E e E[E e[] @e@
(am] P EEPE B EECE] CE[ED N (V)
[— | EEE e m[ws] I 1 ©)

[I— T 1 |

24

*ap Constraint propagation

Forward checking only looks at variables connected to
current value in constraint graph.

e — .
WA NT (] NSW v SA T ®‘®"°@
P EErE BT EEPE B B NS N ‘0
(|| P E/ErEErEEE] DE[E .|
[— | E[rewe m[mrE] 11 @

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints

25

‘ap Arc consistency *

|
Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value xof X there is some allowed y

ESEN S S SR

WA NT a NSW v SA T @‘é

[— | W[[m mEbE]| 11 O
consistent arc.

constraint propagation propagates arc consistency on the graph.
26

‘ap Arc consistency

|
Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of X'there is some allowed y

g — e
= -y)
WA NT Q NSW v SA T @‘@'é@
[— | E[e e e] 1] ‘0
\9/ @

inconsistent arc.
remove blue from source-> consistent arc.

27

Q? -

.q Arc consistency
|
Simplest form of propagation makes each arc consistent
X = Yis consistent iff

for every value x of X'there is some allowed y

(3 @ 4 i
- =7 (NT)
& 1%
WA NT a NSW v SA T @‘@
[— | B[e D E| HjmrE| /
\é—"/ @

this arc just became inconsistent

If Xloses a value, neighbors of X need to be rechecked:

I 1IncAMINA arcre ~-an hearnme inFcFancicktant aAaain

28

’ ' JE
& Arc consistency
|
Simplest form of propagation makes each arc consistent
X = Yis consistent iff

for everv valile ¥ of Xthere is some allowed y

|1 ‘l | ‘l |
S SNy = ©
oI5
WA NT Q NSW v SA T @‘@
(] =] IO Gl 1D (1 O

If X'loses a value, neighbors of X' need to be rechecked

A EQHIsEROGY debeste fpilure earlier than forward checking

"q Arc Consistency s

This is a propagation algorithm. It's like sending messages to neighbors
on the graph! How do we schedule these messages?

Every time a domain changes, all incoming messages need to be re-
send. Repeat until convergence - no message will change any
domains.

Since we only remove values from domains when they can never be
part of a solution, an empty domain means no solution possible at all >
back out of that branch.

Forward checking is simply sending messages into a variable that just 30

*ap Try it yourself

[R,B,G] [R,B,G]

@ O

[R]

O O

[R,B/G] [R,B,G]

Use all heuristics including arc-propagation to solve this problem.

2

31

Tree-structured CSPs

(8)—C:
© (F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d?) time

Compare to general CSPs, where worst-case time is O(d")

32

LAY

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

(,Eﬁ m G:’R_,R_’G . B
B D

/3% /_r& 2N B / 2 a priori

(& NI R By—B Rg_@ constrained

G R A
2. For j from n down to 2, apply REI@DVEINCD]‘*GISTE‘JT{P&T‘E‘RHX 1), X)nOdeS

3. For j from 1 to n, assign X; consistently with Parent(X;)

Note: After the backward pass, there is guaranteed
to be a legal choice for a child note for any of its
leftover values.

This removes any inconsistent values from Parent(Xj),
it applies arc-consistency moving backwards.

wil 4.4, Chapt of AR AZe a5

"~ s

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

®— ®—a
@"@."‘a@ - o

@ @

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d° - (n — ¢)d?), very fast for small ¢

Sections 3.7 and 4.4, Chapter 5

of AIMA2e

a6

*ap Junction Tree Decompositions™

"iq Local search for CSPs s

|
Note: The path to the solution is unimportant, so we can

apply local search!

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climb with A(n) = total number of violated constraints

ga* Example: 4-Queens

|
States: 4 queens in 4 columns (4* = 256 states)

Actions: move queen in column
Goal test: no attacks
Evaluation: A(n) = number of attacks

- B
1

h=5 h=2 h=0

37

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R = :
number of variables

CPU{
time

.
critical
ratio

Sections 3.7 and 4.4, Chaptler 5 of ATMAZe 39

‘:q Summary -

I

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per
node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later
failure

Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies 39

