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Today’s class

• Goal-based agents

• Representing states and operators

• Example problems

• Generic state-space search algorithm

• Specific algorithms

– Breadth-first search

– Depth-first search

– Uniform cost search

– Depth-first iterative deepening

• Example problems revisited



Building goal-based agents
To build a goal-based agent we need to answer the following questions:

– What is the goal to be achieved?

– What are the actions?

– What is the representation?

• E.g., what relevant information is necessary to encode in order to describe the 
state of the world, describe the available transitions, and solve the problem?)

Initial

state

Goal

state

Actions



What is the goal to be achieved?

• Could describe a situation we want to achieve, a set of properties that 

we want to hold, etc. 

• Requires defining a “goal test” so that we know what it means to have 

achieved/satisfied our goal.

• This is a hard question that is rarely tackled in AI, usually assuming that 

the system designer or user will specify the goal to be achieved. 

• Certainly psychologists and motivational speakers always stress the 

importance of people establishing clear goals for themselves as the first 

step towards solving a problem. 



What are the actions?

• Characterize the primitive actions or events that are available for 

making changes in the world in order to achieve a goal. 

• Deterministic world: no uncertainty in an action’s effects. Given an 

action (a.k.a. operator or move) and a description of the current world 

state, the action completely specifies 

– whether that action can be applied to the current world (i.e., is it 

applicable and legal), and 

– what the exact state of the world will be after the action is performed 

in the current world (i.e., no need  for “history” information to 

compute what the new world looks like).



What are the actions? (cont’d)

• Note also that actions in this framework can all be considered as discrete 

events that occur at an instant of time.

– For example, if “Mary is in class” and then performs the action “go home,” then 

in the next situation she is “at home.” There is no representation of a point in 

time where she is neither in class nor at home (i.e., in the state of “going 

home”).

• The actions are largely problem-specific and determined (intelligently ;-) ) 

by the system designer.

• There usually are multiple action sets for solving the same problem.

• Let’s look an example…



8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3 x 3 board, move the tiles 

in such a way so as to produce a desired goal configuration of the tiles. 



Representing actions

• The number of actions / operators depends on the 

representation used in describing a state.

– In the 8-puzzle, we could specify 4 possible moves for each of the 8 

tiles, resulting in a total of 4*8=32 operators. 

– On the other hand, we could specify four moves for the “blank” square 

and we would only need 4 operators.

• Representational shift can greatly simplify a problem!



Representing states
• What information is necessary to encode about the world to sufficiently 

describe all relevant aspects to solving the goal? That is, what knowledge needs 

to be represented in a state description to adequately describe the current state 

or situation of the world?

• The size of a problem is usually described in terms of the number of states

that are possible. 

– The 8-puzzle has 181,440 states.

– Tic-Tac-Toe has about 39 states. 

– Rubik’s Cube has about 1019 states. 

– Checkers has about 1040 states. 

– Chess has about 10120 states in a typical game.



Closed World Assumption

• We will generally use the Closed World Assumption.

• All necessary information about a problem domain is available in each 

percept so that each state is a complete description of the world. 

• There is no incomplete information at any point in time.



Some example problems

• Toy problems and micro-worlds

– 8-Puzzle

– Missionaries and Cannibals

– Cryptarithmetic

– Remove 5 Sticks

– Water Jug Problem

• Real-world problems



8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3 x 3 board, move 

the tiles in such a way so as to produce a desired goal configuration of 

the tiles. 



8-Puzzle

• State Representation: 3 x 3 array configuration of the tiles on the 

board. 

• Operators: Move Blank Square Left, Right, Up or Down. 

– This is a more efficient encoding of the operators than one in which each 

of four possible moves for each of the 8 distinct tiles is used.

• Initial State: A particular configuration of the board. 

• Goal: A particular configuration of the board.



The 8-Queens Problem 

State Representation:  ?

Initial State:  ?

Operators:  ?

Goal:  Place eight queens on a 

chessboard such that no queen 

attacks any other!



Missionaries and Cannibals
Three missionaries and three cannibals wish to cross the river. They have a small boat that

will carry up to two people. Everyone can navigate the boat. If at any time the Cannibals

outnumber the Missionaries on either bank of the river, they will eat the Missionaries.

Find the smallest number of crossings that will allow everyone to cross the river safely.



Missionaries and Cannibals

• Goal: Move all the missionaries and cannibals across 

the river. 

• Constraint: Missionaries can never be outnumbered 

by cannibals on either side of river, or else the 

missionaries are killed. 

• State: configuration of missionaries and cannibals and 

boat on each side of river.

• Initial State: 3 missionaries, 3 cannibals and the boat 

are on the near bank

• Operators: Move boat containing some set of 

occupants across the river (in either direction) to the 

other side.



Missionaries and Cannibals Solution

Near side Far side

0 Initial setup:                   MMMCCC  B        -

1 Two cannibals cross over:        MMMC          B  CC

2 One comes back:                  MMMCC   B        C

3 Two cannibals go over again:     MMM           B  CCC

4 One comes back:                  MMMC    B        CC

5 Two missionaries cross:          MC            B  MMCC

6 A missionary & cannibal return:  MMCC    B        MC

7 Two missionaries cross again:    CC            B  MMMC

8 A cannibal returns:              CCC     B        MMM

9 Two cannibals cross:             C             B  MMMCC

10 One returns:                    CC      B        MMMC

11 And brings over the third:      - B  MMMCCC



Cryptarithmetic

• Find an assignment of digits (0, ..., 9) to letters so that a 

given arithmetic expression is true.  examples: SEND + 

MORE = MONEY and
FORTY     Solution:  29786    

+  TEN                  850

+  TEN                  850

----- -----

SIXTY                31486

F=2, O=9, R=7, etc.



• State:  mapping from letters to digits

• Initial State:  empty mapping

• Operators:  assign a digit to a letter

• Goal Test:  whether the expression is 

true given the complete mapping

Cryptarithmetic

Find an assignment of digits to 

letters so that a given arithmetic 

expression is true.  examples: 

SEND + MORE = MONEY and
FORTY     Solution:  29786    

+  TEN                  850

+  TEN                  850

----- -----

SIXTY                31486

F=2, O=9, R=7, etc.

• State:  mapping from letters to digits

• Initial State:  empty mapping

• Operators:  assign a digit to a letter

• Goal Test:  whether the expression is 

true given the complete mapping

Note: In this problem, the solution is NOT a 

sequence of actions that transforms the initial 



Remove 5 Sticks

Given the following 
configuration of sticks, remove 
exactly 5 sticks in such a way 
that the remaining configuration 
forms exactly 3 squares. 

• State:  ?

• Initial State:  ?

• Operators:  ?



Water Jug Problem

Given a full 5-gallon jug and a full 2-gallon jug, fill the 2-gallon jug with 

exactly one gallon of water.

• State: ?

• Initial State: ?

• Operators: ?

• Goal State: ?

5
2



Water Jug Problem

• State = (x,y), where x is the 

number of gallons of water in 

the 5-gallon jug and y is # of 

gallons in the 2-gallon jug 

• Initial State = (5,2) 

• Goal State = (*,1), where * 

means any amount 

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal. jug

Empty2 – (x,y)→(x,0) Empty 2-gal. jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal. into 5-

gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal. into 2-

gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial 5-gal. 

into 2-gal.

Operator table

5
2



Some more real-world problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Learning



Knowledge representation issues

• What’s in a state ? 

– Is the color of the boat relevant to solving the Missionaries and Cannibals problem? Is 

sunspot activity relevant to predicting the stock market? What to represent is a very hard 

problem that is usually left to the system designer to specify. 

• What level of abstraction or detail to describe the world.

– Too fine-grained and we’ll “miss the forest for the trees.” Too coarse-grained and we’ll 

miss critical details for solving the problem.

• The number of states depends on the representation and level of abstraction chosen. 

– In the Remove-5-Sticks problem, if we represent the individual sticks, then there are 17-

choose-5 possible ways of removing 5 sticks.

– On the other hand, if we represent the “squares” defined by 4 sticks, then there are 6 

squares initially and we must remove 3 squares, so only 6-choose-3 ways of removing 3 

squares.



Formalizing search in a state space

• A state space is a graph (V, E) where V is a set of nodes and E is a set 

of arcs, and each arc is directed from a node to another node

• Each node is a data structure that contains a state description plus other 

information such as the parent of the node, the name of the operator that 

generated the node from that parent, and other bookkeeping data

• Each arc corresponds to an instance of one of the operators. When the 

operator is applied to the state associated with the arc’s source node, 

then the resulting state is the state associated with the arc’s destination 

node



Formalizing search II

• Each arc has a fixed, positive cost associated with it corresponding to 

the cost of the operator.

• Each node has a set of successor nodes corresponding to all of the legal 

operators that can be applied at the source node’s state. 

– The process of expanding a node means to generate all of the successor 

nodes and add them and their associated arcs to the state-space graph

• One or more nodes are designated as start nodes.

• A goal test predicate is applied to a state to determine if its associated 

node is a goal node.
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Formalizing search III

• A solution is a sequence of operators that is associated with 

a path in a state space from a start node to a goal node.

• The cost of a solution is the sum of the arc costs on the 

solution path.

– If all arcs have the same (unit) cost, then the solution cost is just the 

length of the solution (number of steps / state transitions)



Formalizing search IV
• State-space search is the process of searching through a state space for a 

solution by making explicit a sufficient portion of an implicit state-space graph 

to find a goal node. 

– For large state spaces, it isn’t practical to represent the whole space.

– Initially V={S}, where S is the start node; when S is expanded, its successors are 

generated and those nodes are added to V and the associated arcs are added to E. This 

process continues until a goal node is found.

• Each node implicitly or explicitly represents a partial solution path (and cost of 

the partial solution path) from the start node to the given node. 

– In general, from this node there are many possible paths (and therefore solutions) that 

have this partial path as a prefix.



State-space search algorithm
function general-search (problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops



Key procedures to be defined

• EXPAND

– Generate all successor nodes of a given node

• GOAL-TEST

– Test if state satisfies all goal conditions

• QUEUEING-FUNCTION

– Used to maintain a ranked list of nodes that are 

candidates for expansion



Bookkeeping

• Typical node data structure includes:

– State at this node

– Parent node

– Operator applied to get to this node

– Depth of this node (number of operator applications since initial 

state)

– Cost of the path (sum of each operator application so far)



Some issues

• Search process constructs a search tree, where 

– root is the initial state and 

– leaf nodes are nodes

• not yet expanded (i.e., they are in the list “nodes”) or 

• having no successors (i.e., they’re “deadends” because no operators were 

applicable and yet they are not goals)

• Search tree may be infinite because of loops even if state space is small

• Return a path or a node depending on problem. 

– E.g., in cryptarithmetic return a node; in 8-puzzle return a path

• Changing definition of the QUEUEING-FUNCTION leads to different search 

strategies



Evaluating Search Strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity

– How long (worst or average case) does it take to find a solution? Usually measured in 

terms of the number of nodes expanded

• Space complexity

– How much space is used by the algorithm? Usually measured in terms of the 

maximum size of the “nodes” list during the search

• Optimality/Admissibility

– If a solution is found, is it guaranteed to be an optimal one? That is, is it the one with 

minimum cost?



Uninformed vs. informed search

• Uninformed search strategies

– Also known as “blind search,” uninformed search strategies use no 

information about the likely “direction” of the goal node(s) 

– Uninformed search methods: Breadth-first, depth-first, depth-limited, 

uniform-cost, depth-first iterative deepening, bidirectional

• Informed search strategies

– Also known as “heuristic search,” informed search strategies use 

information about the domain to (try to) (usually) head in the general 

direction of the goal node(s)

– Informed search methods: Hill climbing, best-first, greedy search, beam 

search, A, A*



Example for illustrating uninformed search strategies

S

CBA

D GE

3 1 8

15
20 5

3
7



Uninformed Search Methods



Breadth-First
• Enqueue nodes on nodes in FIFO (first-in, first-out) order. 

• Complete 

• Optimal (i.e., admissible) if all operators have the same cost. Otherwise, not optimal but finds 

solution with shortest path length. 

• Exponential time and space complexity, O(bd), where d is the depth of the solution and b is the 

branching factor (i.e., number of children) at each node 

• Will take a long time to find solutions with a large number of steps because must look at all 

shorter length possibilities first 

– A complete search tree of depth d where each non-leaf node has b children, has a total of 1 + b + b2 + ... + 

bd = (b(d+1) - 1)/(b-1) nodes 

– For a complete search tree of depth 12, where every node at depths 0, ..., 11 has 10 children and every node 

at depth 12 has 0 children, there are 1 + 10 + 100 + 1000 + ... + 1012 = (1013 - 1)/9 = O(1012) nodes in the 

complete search tree. If BFS expands 1000 nodes/sec and each node uses 100 bytes of storage, then BFS 

will take 35 years to run in the worst case, and it will use 111 terabytes of memory!



Depth-First (DFS)
• Enqueue nodes on nodes in LIFO (last-in, first-out) order. That is, nodes used 

as a stack data structure to order nodes. 

• May not terminate without a “depth bound,” i.e., cutting off search below a 

fixed depth D ( “depth-limited search”)

• Not complete (with or without cycle detection, and with or without a cutoff 

depth) 

• Exponential time, O(bd), but only linear space, O(bd)

• Can find long solutions quickly if lucky (and short solutions slowly if 

unlucky!)

• When search hits a dead-end, can only back up one level at a time even if the 

“problem” occurs because of a bad operator choice near the top of the tree. 

Hence, only does “chronological backtracking”



Uniform-Cost (UCS)

• Enqueue nodes by path cost. That is, let g(n) = cost of the path from the 

start node to the current node n. Sort nodes by increasing value of g. 

• Called “Dijkstra’s Algorithm” in the algorithms literature and similar to 

“Branch and Bound Algorithm” in operations research literature 

• Complete (*)

• Optimal/Admissible (*)

• Admissibility depends on the goal test being applied when a node is 

removed from the nodes list, not when its parent node is expanded and 

the node is first generated 

• Exponential time and space complexity, O(bd) 



Depth-First Iterative Deepening (DFID)

• First do DFS to depth 0 (i.e., treat start node as having no successors), then, if no solution 

found, do DFS to depth 1, etc. 

until solution found do

DFS with depth cutoff c

c = c+1

• Complete 

• Optimal/Admissible if all operators have the same cost. Otherwise, not optimal but 

guarantees finding solution of shortest length (like BFS). 

• Time complexity seems worse than BFS or DFS because nodes near the top of the search 

tree are generated multiple times, but because almost all of the nodes are near the bottom 

of a tree, the worst case time complexity is still exponential, O(bd).



Depth-First Iterative Deepening

• If branching factor is b and solution is at depth d, then nodes at depth d are generated once, 
nodes at depth d-1 are generated twice, etc. 

– IDS : (d) b + (d-1) b2 + … + (2) b(d-1) + bd = O(bd). 

– If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched than exist at depth d 
(in the worst case).

• However, let’s compare this to the time spent on BFS:

– BFS : b + b2 + … + bd + (b(d+1) – b) = O(bd).

– Same time complexity of O(bd), but BFS expands some nodes at depth d+1, which can 
make a HUGE difference:

• With b = 10, d = 5,

• BFS: 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100

• IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

• IDS can actually be quicker in-practice than BFS, even though it regenerates early 
states.



Depth-First Iterative Deepening

• Exponential time complexity, O(bd), like BFS 

• Linear space complexity, O(bd), like DFS 

• Has advantage of BFS (i.e., completeness) and also advantages of DFS 

(i.e., limited space and finds longer paths more quickly) 

• Generally preferred for large state spaces where solution depth is unknown



Uninformed Search Results



Breadth-First Search

Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }   

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }         

D6 { E10 G18 G21 G13 }   

E10 { G18 G21 G13 }     

G18 { G21 G13 }

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7



Depth-First Search 

Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }    

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }               

G18 { B1 C8 } 

Solution path found is S A G, cost 18

Number of nodes expanded (including goal node) = 5



Uniform-Cost Search 
Expanded node  Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G1 }

C8 { E10 G13 G18 G21 }       

E10 { G13 G18 G21 }

G13 { G18 G21 }                             

Solution path found is S B G, cost 13

Number of nodes expanded (including goal node) = 7



How they perform
• Breadth-First Search: 

– Expanded nodes: S A B C D E G 

– Solution found: S A G (cost 18)

• Depth-First Search:

– Expanded nodes: S A D E G 

– Solution found: S A G (cost 18)

• Uniform-Cost Search: 

– Expanded nodes: S A D B C E G 

– Solution found: S B G (cost 13)

This is the only uninformed search that worries about costs.

• Iterative-Deepening Search: 

– nodes expanded: S S A B C S A D E G 

– Solution found: S A G (cost 18)



Bi-directional search

• Alternate searching from the start state toward the goal and from the goal state 

toward the start.

• Stop when the frontiers intersect.

• Works well only when there are unique start and goal states.

• Requires the ability to generate “predecessor” states.

• Can (sometimes) lead to finding a solution more quickly.

• Time complexity: O(bd/2).   Space complexity: O(bd/2).



Comparing Search Strategies 

b – branching factor d – depth of optimal solution

m – maximum depth l – depth limit



Avoiding Repeated States 

• In increasing order of effectiveness in reducing size of state 
space and with increasing computational costs:

1. Do not return to the state you just came from. 

2. Do not create paths with cycles in them. 

3. Do not generate any state that was ever created before.

• Net effect depends on frequency of “loops” in state space. 



A State Space that Generates an

Exponentially Growing  Search Space



Graph Search

function graph-search (problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and operator costs

;; queueing-function is a comparator function that ranks two states

;; graph-search returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

closed = {}

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node.SOLUTION

if node.STATE is not in closed

then ADD(node, closed)

nodes = QUEUEING-FUNCTION(nodes,   

EXPAND(node, problem.OPERATORS))

end

;; Note: The goal test is NOT done when nodes are generated

;; Note: closed should be implemented as a hash table for efficiency



Graph Search Strategies

• Breadth-first search and uniform-cost search are optimal graph search 

strategies.

• Iterative deepening search and depth-first search can follow a non-

optimal path to the goal.

• Iterative deepening search can be used with modification:

– It must check whether a new path to a node is better than the original one

– If so, IDS must revise the depths and path costs of the node’s descendants.



Holy Grail Search

Expanded node  Nodes list

{ S0 }

S0 {C8 A3 B1 }

C8 { G13 A3 B1 }    

G13 { A3 B1 } 

Solution path found is S C G, cost 13 (optimal)

Number of nodes expanded (including goal node) = 3 

(as few as possible!)


