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OUTLINE

 First-order logic

 Properties, relations, functions, quantifiers, …

 Terms, sentences, axioms, theories, proofs, …

 Extensions to first-order logic

 Logical agents

 Reflex agents

 Representing change: situation calculus, frame problem

 Preferences on actions

 Goal-based agents



FIRST-ORDER LOGIC

 First-order logic (FOL) models the world in terms of 

 Objects, which are things with individual identities

 Properties of objects that distinguish them from other objects

 Relations that hold among sets of objects

 Functions, which are a subset of relations where there is only 
one “value” for any given “input”

 Examples: 

 Objects: Students, lectures, companies, cars ... 

 Relations: Brother-of, bigger-than, outside, part-of, has-color, 
occurs-after, owns, visits, precedes, ... 

 Properties: blue, oval, even, large, ... 

 Functions: father-of, best-friend, second-half, one-more-than ... 



USER PROVIDES

 Constant symbols, which represent individuals in the world
 Mary
 3
 Green

 Function symbols, which map individuals to individuals

 father-of(Mary) = John

 color-of(Sky) = Blue

 Predicate symbols, which map individuals to truth values

 greater(5,3)

 green(Grass) 

 color(Grass, Green)



FOL PROVIDES

 Variable symbols

 E.g., x, y, foo

 Connectives

 Same as in PL: not (), and (), or (), implies 
(), if and only if (biconditional )

 Quantifiers

 Universal x or  (Ax)

 Existential x or (Ex)



SENTENCES ARE BUILT FROM TERMS AND

ATOMS

 A term (denoting a real-world individual) is a constant symbol, a variable 
symbol, or an n-place function of n terms. 

x and f(x1, ..., xn) are terms, where each xi is a term. 

A term with no variables is a ground term

 An atomic sentence (which has value true or false) is an n-place predicate 
of n terms

 A complex sentence is formed from atomic sentences connected by the 
logical connectives:

P, PQ, PQ, PQ, PQ where P and Q are sentences

 A quantified sentence adds quantifiers  and 

 A well-formed formula (wff) is a sentence containing no “free” variables. 
That is, all variables are “bound” by universal or existential quantifiers. 

(x)P(x,y) has x bound as a universally quantified variable, but y is free. 



QUANTIFIERS

 Universal quantification

 (x)P(x) means that P holds for all values of x in the 
domain associated with that variable

 E.g., (x) dolphin(x)  mammal(x)

 Existential quantification

 ( x)P(x) means that P holds for some value of x in 
the domain associated with that variable

 E.g., ( x) mammal(x)  lays-eggs(x)

 Permits one to make a statement about some object 
without naming it



QUANTIFIERS
 Universal quantifiers are often used with “implies” to form “rules”:

(x) student(x)  smart(x) means “All students are smart”

 Universal quantification is rarely used to make blanket statements about 

every individual in the world: 

(x)student(x)smart(x) means “Everyone in the world is a student and is smart”

 Existential quantifiers are usually used with “and” to specify a list of 

properties about an individual:

(x) student(x)  smart(x) means “There is a student who is smart”

 A common mistake is to represent this English sentence as the FOL sentence:

(x) student(x)  smart(x) 

 But what happens when there is a person who is not a student?



QUANTIFIER SCOPE

 Switching the order of universal quantifiers does not

change the meaning: 

 (x)(y)P(x,y) ↔ (y)(x) P(x,y)

 Similarly, you can switch the order of existential 

quantifiers:

 (x)(y)P(x,y) ↔ (y)(x) P(x,y)

 Switching the order of universals and existentials does

change meaning: 

 Everyone likes someone: (x)(y) likes(x,y) 

 Someone is liked by everyone: (y)(x) likes(x,y)



CONNECTIONS BETWEEN ALL AND

EXISTS

We can relate sentences involving 

and  using De Morgan’s laws:

(x) P(x) ↔ (x) P(x)

(x) P ↔ (x) P(x)

(x) P(x) ↔  (x) P(x)

(x) P(x) ↔ (x) P(x)



QUANTIFIED INFERENCE RULES

 Universal instantiation

 x P(x)  P(A)

 Universal generalization

 P(A)  P(B) …  x P(x)

 Existential instantiation

 x P(x) P(F)      skolem constant F

 Existential generalization

 P(A)  x P(x)



UNIVERSAL INSTANTIATION

(A.K.A. UNIVERSAL ELIMINATION)

 If (x) P(x) is true, then P(C) is true, where C is 

any constant in the domain of x

 Example: 

(x) eats(Ziggy, x)  eats(Ziggy, IceCream)

 The variable symbol can be replaced by any 

ground term, i.e., any constant symbol or 

function symbol applied to ground terms only



EXISTENTIAL INSTANTIATION

(A.K.A. EXISTENTIAL ELIMINATION)

 From (x) P(x) infer P(c)

 Example:

 (x) eats(Ziggy, x)  eats(Ziggy, Stuff)

 Note that the variable is replaced by a brand-new constant

not occurring in this or any other sentence in the KB

 Also known as skolemization; constant is a skolem constant

 In other words, we don’t want to accidentally draw other 

inferences about it by introducing the constant 

 Convenient to use this to reason about the unknown object, 

rather than constantly manipulating the existential 

quantifier



EXISTENTIAL GENERALIZATION

(A.K.A. EXISTENTIAL INTRODUCTION)

 If P(c) is true, then (x) P(x) is inferred. 

 Example

eats(Ziggy, IceCream)  (x) eats(Ziggy, x)

 All instances of the given constant symbol are 

replaced by the new variable symbol

 Note that the variable symbol cannot already 

exist anywhere in the expression



TRANSLATING ENGLISH TO FOL
Every gardener likes the sun.

x gardener(x)  likes(x,Sun) 

You can fool some of the people all of the time.

x t  person(x) time(t)  can-fool(x,t)

You can fool all of the people some of the time.

x t (person(x)  time(t) can-fool(x,t))

x (person(x)  t (time(t) can-fool(x,t))

All purple mushrooms are poisonous.

x (mushroom(x)  purple(x))  poisonous(x) 

No purple mushroom is poisonous.

x purple(x)  mushroom(x)  poisonous(x) 

x  (mushroom(x)  purple(x))  poisonous(x) 

There are exactly two purple mushrooms.

x y mushroom(x)  purple(x)  mushroom(y)  purple(y) ^ (x=y)  z (mushroom(z) 
purple(z))  ((x=z)  (y=z)) 

Clinton is not tall.

tall(Clinton) 

X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects 
directly on top of one another starting with X and ending with Y.

x y above(x,y) ↔ (on(x,y)  z (on(x,z)  above(z,y))) 

Equivalent

Equivalent



MONTY PYTHON AND THE ART OF

FALLACY

Cast

 Sir Bedevere the Wise, master of (odd) logic

 King Arthur

 Villager 1, witch-hunter

 Villager 2, ex-newt

 Villager 3, one-line wonder

 All, the rest of you scoundrels, mongrels, and nere-

do-wells. 



AN EXAMPLE FROM MONTY PYTHON

BY WAY OF RUSSELL & NORVIG

 FIRST VILLAGER: We have found a witch. May we 
burn her?

 ALL: A witch! Burn her!

 BEDEVERE: Why do you think she is a witch?

 SECOND VILLAGER: She turned me into a newt.

 B: A newt?

 V2 (after looking at himself for some time): I got 
better.

 ALL: Burn her anyway.

 B: Quiet! Quiet! There are ways of telling whether 
she is a witch.



MONTY PYTHON CONT.

 B: Tell me… what do you do with witches?

 ALL: Burn them!

 B: And what do you burn, apart from witches?

 Third Villager: …wood?

 B: So why do witches burn?

 V2 (after a beat): because they’re made of wood?

 B: Good.

 ALL: I see. Yes, of course.



MONTY PYTHON CONT.

 B: So how can we tell if she is made of wood?

 V1: Make a bridge out of her.

 B: Ah… but can you not also make bridges out of 
stone?

 ALL: Yes, of course… um… er…

 B: Does wood sink in water?

 ALL: No, no, it floats. Throw her in the pond.

 B: Wait. Wait… tell me, what also floats on water?

 ALL: Bread? No, no no. Apples… gravy… very small 
rocks…

 B: No, no, no,



MONTY PYTHON CONT.

 KING ARTHUR: A duck!

 (They all turn and look at Arthur. Bedevere looks 

up, very impressed.)

 B: Exactly. So… logically…

 V1 (beginning to pick up the thread): If she… 

weighs the same as a duck… she’s made of 

wood.

 B: And therefore?

 ALL: A witch!



MONTY PYTHON FALLACY #1

 x witch(x)  burns(x)

 x wood(x)  burns(x)

 -------------------------------

  z witch(x)  wood(x)

 p  q

 r  q

 ---------

 p  r                             Fallacy: Affirming the 
conclusion



MONTY PYTHON NEAR-FALLACY #2

 wood(x)  can-build-bridge(x)

 -----------------------------------------

  can-build-bridge(x)  wood(x)

 B: Ah… but can you not also make bridges out of 

stone?



MONTY PYTHON FALLACY #3

 x wood(x)  floats(x)

 x duck-weight (x)  floats(x)

 -------------------------------

  x duck-weight(x)  wood(x)

 p  q

 r  q

 -----------

  r  p



MONTY PYTHON FALLACY #4

 z light(z)  wood(z)

 light(W)

 ------------------------------

  wood(W)                                 ok…………..

 witch(W)  wood(W)               applying universal 
instan.

to fallacious 
conclusion #1

 wood(W)

 ---------------------------------

  witch(z)



EXAMPLE: A SIMPLE GENEALOGY KB BY FOL
 Build a small genealogy knowledge base using FOL that

 contains facts of immediate family relations (spouses, parents, etc.)

 contains definitions of more complex relations (ancestors, relatives)

 is able to answer queries about relationships between people

 Predicates:

 parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.

 spouse(x, y), husband(x, y), wife(x,y)

 ancestor(x, y), descendant(x, y)

 male(x), female(y)

 relative(x, y)

 Facts:

 husband(Joe, Mary), son(Fred, Joe)

 spouse(John, Nancy), male(John), son(Mark, Nancy)

 father(Jack, Nancy), daughter(Linda, Jack)

 daughter(Liz, Linda)

 etc.



 Rules for genealogical relations
 (x,y) parent(x, y) ↔ child (y, x)

(x,y) father(x, y) ↔ parent(x, y)  male(x) (similarly for mother(x, 
y))
(x,y) daughter(x, y) ↔ child(x, y)  female(x) (similarly for son(x, 
y))

 (x,y) husband(x, y) ↔ spouse(x, y)  male(x) (similarly for wife(x, 
y))
(x,y) spouse(x, y) ↔ spouse(y, x)  (spouse relation is symmetric)

 (x,y) parent(x, y)  ancestor(x, y) 
(x,y)(z) parent(x, z)  ancestor(z, y)  ancestor(x, y) 

 (x,y) descendant(x, y) ↔ ancestor(y, x) 
 (x,y)(z) ancestor(z, x)  ancestor(z, y)  relative(x, y) 

(related by common ancestry)
(x,y) spouse(x, y)  relative(x, y) (related by marriage)
(x,y)(z) relative(z, x)  relative(z, y)  relative(x, y) (transitive)
(x,y) relative(x, y) ↔ relative(y, x) (symmetric)

 Queries
 ancestor(Jack, Fred)   /* the answer is yes */
 relative(Liz, Joe)        /* the answer is yes */
 relative(Nancy,  Matthew)   

/* no answer in general, no if under closed world assumption */
 (z) ancestor(z, Fred)  ancestor(z, Liz)



SEMANTICS OF FOL

 Domain M: the set of all objects in the world (of interest)

 Interpretation I: includes

 Assign each constant to an object in M

 Define each function of n arguments as a mapping Mn => M

 Define each predicate of n arguments as a mapping Mn => {T, F}

 Therefore, every ground predicate with any instantiation will have a 

truth value

 In general there is an infinite number of interpretations because |M| is 

infinite

 Define logical connectives:  ~, ^, , =>, <=> as in PL

 Define semantics of (x) and (x)

 (x) P(x) is true iff P(x) is true under all interpretations 

 (x) P(x) is true iff P(x) is true under some interpretation 



 Model: an interpretation of a set of sentences such that 

every sentence is True

 A sentence is

 satisfiable if it is true under some interpretation

 valid if it is true under all possible interpretations

 inconsistent if there does not exist any interpretation 

under which the sentence is true

 Logical consequence: S |= X if all models of S are also 

models of X



AXIOMS, DEFINITIONS AND THEOREMS

Axioms are facts and rules that attempt to capture all of 
the (important) facts and concepts about a domain; 
axioms can be used to prove theorems
Mathematicians don’t want any unnecessary (dependent) 
axioms –ones that can be derived from other axioms

Dependent axioms can make reasoning faster, however

Choosing a good set of axioms for a domain is a kind of design 
problem

A definition of a predicate is of the form “p(X) ↔ …” 
and can be decomposed into two parts
Necessary description: “p(x)  …” 

Sufficient description “p(x)  …”

Some concepts don’t have complete definitions (e.g., person(x))



MORE ON DEFINITIONS

 A necessary condition must be satisfied for a statement to be true.

 A sufficient condition, if satisfied, assures the statement’s truth.

 Duality:  “P is sufficient for Q” is the same as “Q is necessary for P.”

 Examples: define father(x, y) by parent(x, y) and male(x)

 parent(x, y) is a necessary (but not sufficient) description of 

father(x, y)

 father(x, y)  parent(x, y)

 parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) 

description of father(x, y):

father(x, y)  parent(x, y) ^ male(x) ^ age(x, 35) 

 parent(x, y) ^ male(x) is a necessary and sufficient description of 

father(x, y) 

parent(x, y) ^ male(x) ↔ father(x, y)



MORE ON DEFINITIONS

P(x)

S(x)

S(x) is a 

necessary 

condition of P(x)

(x) P(x) => S(x)

S(x)

P(x)

S(x) is a 

sufficient 

condition of P(x)

(x) P(x) <= S(x)

P(x)

S(x)

S(x) is a 

necessary and 

sufficient 

condition of P(x)

(x) P(x) <=> S(x)



HIGHER-ORDER LOGIC

 FOL only allows to quantify over variables, and variables can 
only range over objects. 

 HOL allows us to quantify over relations

 Example: (quantify over functions)

“two functions are equal iff they produce the same value 
for all arguments”

f g (f = g)  (x f(x) = g(x))

 Example: (quantify over predicates)

r transitive( r )  (xyz) r(x,y)  r(y,z)  r(x,z)) 

 More expressive, but undecidable. (there isn’t an effective 
algorithm to decide whether all sentences are valid)
 First-order logic is decidable only when it uses predicates with only one 

argument.



EXPRESSING UNIQUENESS

 Sometimes we want to say that there is a single, unique 
object that satisfies a certain condition

 “There exists a unique x such that king(x) is true” 
 x king(x)  y (king(y)  x=y)

 x king(x)  y (king(y)  xy)

 ! x king(x) 

 “Every country has exactly one ruler”
 c country(c)  ! r ruler(c,r) 

 Iota operator: “ x P(x)” means “the unique x such that 
p(x) is true”
 “The unique ruler of Freedonia is dead”

 dead( x ruler(freedonia,x))



NOTATIONAL DIFFERENCES

 Different symbols for and, or, not, implies, ...
         

 p v (q ^ r) 

 p + (q * r)

 etc

 Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

 Lispy notations
(forall ?x (implies (and (furry ?x) 

(meows ?x) 

(has ?x claws))

(cat ?x)))



LOGICAL AGENTS FOR THE WUMPUS

WORLD

Three (non-exclusive) agent architectures:

 Reflex agents
Have rules that classify situations, 

specifying how to react to each possible 
situation 

 Model-based agents
Construct an internal model of their world 

 Goal-based agents
Form goals and try to achieve them



A SIMPLE REFLEX AGENT

 Rules to map percepts into observations:
b,g,u,c,t Percept([Stench, b, g, u, c], t)  Stench(t)

s,g,u,c,t Percept([s, Breeze, g, u, c], t)  Breeze(t)

s,b,u,c,t Percept([s, b, Glitter, u, c], t)  AtGold(t)

 Rules to select an action given observations:
t AtGold(t)  Action(Grab, t);

 Some difficulties: 
 Consider Climb. There is no percept that indicates the agent 

should climb out – position and holding gold are not part of the 
percept sequence

 Loops – the percept will be repeated when you return to a 
square, which should cause the same response (unless we 
maintain some internal model of the world)



REPRESENTING CHANGE

 Representing change in the world in logic can be 
tricky.

 One way is just to change the KB

 Add and delete sentences from the KB to reflect changes

 How do we remember the past, or reason about 
changes?

 Situation calculus is another way

 A situation is a snapshot of the world at some 
instant in time

 When the agent performs an action A in situation 
S1, the result is a new   situation S2.



SITUATIONS



SITUATION CALCULUS

 A situation is a snapshot of the world at an interval of time during 
which nothing changes 

 Every true or false statement is made with respect to a particular 
situation. 

 Add situation variables to every predicate.

 at(Agent,1,1) becomes at(Agent,1,1,s0): at(Agent,1,1) is true in situation (i.e., 
state) s0.

 Alternatively, add a special 2nd-order predicate, holds(f,s), that means “f is 
true in situation s.” E.g., holds(at(Agent,1,1),s0) 

 Add a new function, result(a,s), that maps a situation s into a new 
situation as a result of performing action a. For example, result(forward, 
s) is a function that returns the successor state (situation) to s 

 Example: The action agent-walks-to-location-y could be represented by

 (x)(y)(s) (at(Agent,x,s)  onbox(s))  at(Agent,y,result(walk(y),s)) 



DEDUCING HIDDEN PROPERTIES

 From the perceptual information we obtain in 

situations, we can infer properties of 

locations

l,s at(Agent,l,s)  Breeze(s)  Breezy(l) 

l,s at(Agent,l,s)  Stench(s)  Smelly(l) 

 Neither Breezy nor Smelly need situation 

arguments because pits and Wumpuses do not 

move around



DEDUCING HIDDEN PROPERTIES II

 We need to write some rules that relate various aspects of a single 

world state (as opposed to across states)

 There are two main kinds of such rules: 

 Causal rules reflect the assumed direction of causality in the world: 

(l1,l2,s) At(Wumpus,l1,s)  Adjacent(l1,l2)  Smelly(l2) 

( l1,l2,s) At(Pit,l1,s)  Adjacent(l1,l2)  Breezy(l2) 

Systems that reason with causal rules are called model-based                  

reasoning systems

 Diagnostic rules infer the presence of hidden properties directly from 

the percept-derived information. We have already seen two diagnostic 

rules:

( l,s) At(Agent,l,s)  Breeze(s)  Breezy(l) 

( l,s) At(Agent,l,s)  Stench(s)  Smelly(l) 



REPRESENTING CHANGE:

THE FRAME PROBLEM

 Frame axioms: If property x doesn’t change as a 

result of applying action a in state s, then it stays 

the same.

 On (x, z, s)  Clear (x, s) 

On (x, table, Result(Move(x, table), s)) 

On(x, z, Result (Move (x, table), s))

 On (y, z, s)  y x  On (y, z, Result (Move (x, table), 

s))

 The proliferation of frame axioms becomes very 

cumbersome in complex domains



THE FRAME PROBLEM II

 Successor-state axiom: General statement that 
characterizes every way in which a particular predicate can 
become true:
 Either it can be made true, or it can already be true and not 

be changed:

 On (x, table, Result(a,s)) 
[On (x, z, s)  Clear (x, s)  a = Move(x, table)] 
[On (x, table, s)  a  Move (x, z)]

 In complex worlds, where you want to reason about longer 
chains of action, even these types of axioms are too 
cumbersome
 Planning systems use special-purpose inference methods to 

reason about the expected state of the world at any point in time 
during a multi-step plan



QUALIFICATION PROBLEM

 Qualification problem:

 How can you possibly characterize every single effect of an 

action, or every single exception that might occur?

 When I put my bread into the toaster, and push the button, 

it will become toasted after two minutes, unless…

 The toaster is broken, or…

 The power is out, or…

 I blow a fuse, or…

 A neutron bomb explodes nearby and fries all electrical 

components, or…

 A meteor strikes the earth, and the world we know it ceases to 

exist, or…



RAMIFICATION PROBLEM

 Similarly, it’s just about impossible to characterize every side 

effect of every action, at every possible level of detail:

 When I put my bread into the toaster, and push the button, the bread 

will become toasted after two minutes, and…

 The crumbs that fall off the bread onto the bottom of the toaster over tray 

will also become toasted, and…

 Some of the aforementioned crumbs will become burnt, and…

 The outside molecules of the bread will become “toasted,” and…

 The inside molecules of the bread will remain more “breadlike,” and…

 The toasting process will release a small amount of humidity into the air 

because of evaporation, and…

 The heating elements will become a tiny fraction more likely to burn out the 

next time I use the toaster, and…

 The electricity meter in the house will move up slightly, and…



KNOWLEDGE ENGINEERING!

 Modeling the “right” conditions and the “right” effects 
at the “right” level of abstraction is very difficult

 Knowledge engineering (creating and maintaining 
knowledge bases for intelligent reasoning) is an entire 
field of investigation

 Many researchers hope that automated knowledge 
acquisition and machine learning tools can fill the 
gap:
 Our intelligent systems should be able to learn about the 

conditions and effects, just like we do!

 Our intelligent systems should be able to learn when to 
pay attention to, or reason about, certain aspects of 
processes, depending on the context!



PREFERENCES AMONG ACTIONS

 A problem with the Wumpus world knowledge 
base that we have built so far is that it is difficult 
to decide which action is best among a number of 
possibilities. 

 For example, to decide between a forward and a 
grab, axioms describing when it is OK to move to 
a square would have to mention glitter. 

 This is not modular! 

 We can solve this problem by separating facts 
about actions from facts about goals. This way 
our agent can be reprogrammed just by asking it 
to achieve different goals. 



PREFERENCES AMONG ACTIONS

 The first step is to describe the desirability of 
actions independent of each other. 

 In doing this we will use a simple scale: actions 
can be Great, Good, Medium, Risky, or Deadly. 

 Obviously, the agent should always do the best 
action it can find: 

(a,s) Great(a,s)  Action(a,s) 

(a,s) Good(a,s)  (b) Great(b,s)   Action(a,s) 

(a,s) Medium(a,s)  ((b) Great(b,s)  Good(b,s)) 
Action(a,s) 

... 



PREFERENCES AMONG ACTIONS

 We use this action quality scale in the following way. 

 Until it finds the gold, the basic strategy for our agent is: 

 Great actions include picking up the gold when found and 
climbing out of the cave with the gold. 

 Good actions include moving to a square that’s OK and hasn't 
been visited yet. 

 Medium actions include moving to a square that is OK and has 
already been visited. 

 Risky actions include moving to a square that is not known to be 
deadly or OK. 

 Deadly actions are moving into a square that is known to have a 
pit or a Wumpus. 



GOAL-BASED AGENTS

 Once the gold is found, it is necessary to change strategies.  
So now we need a new set of action values. 

 We could encode this as a rule: 

 (s) Holding(Gold,s)  GoalLocation([1,1]),s)

 We must now decide how the agent will work out a sequence 
of actions to accomplish the goal. 

 Three possible approaches are:

 Inference: good versus wasteful solutions

 Search: make a problem with operators and set of 
states

 Planning: to be discussed later



THANK YOU


