
C H A P T E R 9

O l i v e r S c h u l t e

Inference in First-Order Logic

Outline

 Reducing first-order inference to propositional inference

 Unification

 Lifted Resolution

Basic Setup

 We focus on a set of 1st-order clauses.

 All variables are universally quantified.

 Many knowledge bases can be converted to this format.

 Existential quantifiers are eliminated using function

symbols

 Quantifier elimination, Skolemization.

o Example UBC Prolog Demo

http://www.aispace.org

Two Basic Ideas for Inference in FOL

1. Grounding:

I. Treat first-order sentences as a template.

II. Instantiating all variables with all possible constants gives a set of

ground propositional clauses.

III. Apply efficient propositional solvers, e.g. SAT.

2. Lifted Inference:

1. Generalize propositional methods for 1st-order methods.

2. Unification: recognize instances of variables where necessary.

Universal instantiation (UI)

 Notation: Subst({v/g}, α) means the result of substituting g for v in sentence α

 Every instantiation of a universally quantified sentence is entailed by it:



v α

Subst({v/g}, α)

for any variable v and ground term g

 E.g., x King(x)  Greedy(x)  Evil(x) yields

King(John)  Greedy(John)  Evil(John), {x/John}

King(Richard)  Greedy(Richard)  Evil(Richard), {x/Richard}

King(Father(John))  Greedy(Father(John))  Evil(Father(John)), {x/Father(John)}

Reduction to propositional form

Suppose the KB contains the following:

x King(x)  Greedy(x)  Evil(x)

Father(x)

King(John)

Greedy(John)

Brother(Richard,John)

 Instantiating the universal sentence in all possible ways, we have:
King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)

 The new KB is propositionalized: propositional symbols are
 King(John), Greedy(John), Evil(John), King(Richard), etc

Reduction continued

 Every FOL KB can be propositionalized so as to preserve
entailment
 A ground sentence is entailed by new KB iff entailed by original KB

 Idea for doing inference in FOL:
 propositionalize KB and query

 apply resolution-based inference

 return result

 Problem: with function symbols, there are infinitely many
ground terms,
 e.g., Father(Father(Father(John))), etc

Reduction continued

Theorem: Herbrand (1930). If a sentence α is entailed by a FOL

KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Example
x King(x)  Greedy(x)  Evil(x)
Father(x)
King(John)
Greedy(Richard)
Brother(Richard,John)

Query Evil(X)?

 Depth 0

Father(John)

Father(Richard)

King(John)

Greedy(Richard)

Brother(Richard , John)

King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(Father(John))  Greedy(Father(John))  Evil(Father(John))

King(Father(Richard))  Greedy(Father(Richard))  Evil(Father(Richard))

 Depth 1

Depth 0 +

Father(Father(John))

Father(Father(John))

King(Father(Father(John)))  Greedy(Father(Father(John)))  Evil(Father(Father(John)))

Issues with Propositionalization

1. Problem: works if α is entailed, loops if α is not entailed

1. Propositionalization generates lots of irrelevant sentences
 So inference may be very inefficient. E.g., consider KB

x King(x)  Greedy(x)  Evil(x)
King(John)
y Greedy(y)
Brother(Richard,John)

 It seems obvious that Evil(John) is entailed, but propositionalization produces lots of facts such as

Greedy(Richard) that are irrelevant.

 Approach: Magic Set Rewriting, from deductive databases.

1. With p k-ary predicates and n constants, there are p·nk instantiations.
 Current Research, Mitchell and Ternovska SFU.

 Alternative: do inference directly with FOL sentences

Unification

 Recall: Subst(θ, p) = result of substituting θ into sentence p

 Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists

Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

 Example:
p = Knows(John,x)
q = Knows(John, Jane)

Unify(p,q) = {x/Jane}

Unification examples

 simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) {fail}

 Last unification fails: only because x can’t take values John and OJ at the same time

 Problem is due to use of same variable x in both sentences

 Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)


Unification

 To unify Knows(John,x) and Knows(y,z),


θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

 The first unifier is more general than the second.


 Theorem: There is a single most general unifier (MGU) that is unique up
to renaming of variables.



MGU = { y/John, x/z }

 General algorithm in Figure 9.1 in the text

Recall our example…

x King(x)  Greedy(x)  Evil(x)

King(John)

y Greedy(y)

Brother(Richard,John)

We would like to infer Evil(John) without

propositionalization.

Basic Idea: Use Modus Ponens, Resolution when

literals unify.



Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1  p2  …  pn q)

Subst(θ,q)

Example:

King(John), Greedy(John) ,x King(x)  Greedy(x)  Evil(x)

p1' is King(John) p1 is King(x)

p2' is Greedy(John) p2 is Greedy(x)

θ is {x/John} q is Evil(x)

Subst(θ,q) is Evil(John)

where we can unify pi‘ and pi for all i

Evil(John)

Logic programming: Prolog

 Program = set of clauses = head :- literal1, … literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Missile(m1).

Owns(nono,m1).

Sells(west,X,nono):- Missile(X) Owns(nono,X).

weapon(X):- missile(X).

hostile(X) :- enemy(X,america).

american(west)

Query : criminal(west)?

Query: criminial(X)?

 membership
 member(X,[X|_]).

 member(X,[_|T]):- member(X,T).

 ?-member(2,[3,4,5,2,1])

 ?-member(2,[3,4,5,1])

 subset
 subset([],L).

 subset([X|T],L):- member(X,L),subset(T,L).

 ?- subset([a,b],[a,c,d,b]).

 Nth element of list
 nth(0,[X|_],X).

 nth(N,[_|T],R):- nth(N-1,T,R).

 ?nth(2,[3,4,5,2,1],X)

Proof Search in Prolog

 As in the propositional case, can do a depth-first or

breadth-first search + unification.

 See UBC definite clause tool for demonstration.

Resolution in FOL

 Full first-order version:

l1  ···  lk, m1  ···  mn

Subst(θ , l1  ···  li-1  li+1  ···  lk  m1  ···  mj-1  mj+1  ···  mn)

where Unify(li, mj) = θ.

 The two clauses are assumed to be standardized apart so that they share no variables.

 For example,

Rich(x)  Unhappy(x) Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

 Apply resolution steps to CNF(KB  α); complete for FOL.

 Gödel’s completeness theorem.

Knowledge Base in FOL

 The law says that it is a crime for an American to
sell weapons to hostile nations. The country
Nono, an enemy of America, has some missiles,
and all of its missiles were sold to it by Colonel
West, who is American.

 Exercise: Formulate this knowledge in FOL.



Knowledge Base in FOL

 The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is
American.

... it is a crime for an American to sell weapons to hostile nations:
American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x)  Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:

Missile(x)  Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America)  Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

Example Knowledge Base in FOL (Hassan)

... it is a crime for an American to sell weapons to hostile nations:
American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x)  Missile(x):

Owns(Nono,M1) and Missile(M1)
… all of its missiles were sold to it by Colonel West

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)
Missiles are weapons:

Missile(x)  Weapon(x)
An enemy of America counts as "hostile“:

Enemy(x,America)  Hostile(x)
West, who is American …

American(West)
The country Nono, an enemy of America …

Enemy(Nono,America)

Can be converted to CNF

Query: Criminal(West)?

Resolution proof

Skolemization and Quantifier Elimination

 Problem: how can we use Horn clauses and aply

unification with existential quantifiers?

 Not allowed by Prolog (try Aispace demo).

 Example.

 Forall x. thereis y. Loves(y,x).

 Forall x. forall y. Loves(y,x) => Good(x).

 This entails (forall x. Good(x)) and Good(jack).

 Replace existential quantifiers by Skolem functions.

 Forall x. Loves(f(x),x).

 Forall x. forall y. Loves(y,x) => Good(x).

 This entails (forall x. Good(x)) and Good(jack).

The point of Skolemization

 Sentences with [forall thereis …] structure become [forall

…].

Can use unification of terms.

 Original sentences are satisfiable if and only if skolemized

sentences are.

 See Aispace demo.

Complex Skolemization Example

KB:

 Everyone who loves all animals is loved by someone.

 Anyone who kills animals is loved by no-one.

 Jack loves all animals.

 Either Curiosity or Jack killed the cat, who is named
Tuna.

Query: Did Curiosity kill the cat?

Inference Procedure:

1. Express sentences in FOL.

2. Eliminate existential quantifiers.

3. Convert to CNF form and negated query.

Resolution-based Inference

Summary

 Basic FOL inference algorithm (satisfiability check).

1. Use Skolemization to eliminate quantifiers

1. Only universal quantifiers remain.

2. Convert to clausal form.

3. Use resolution + unification.

 This algorithm is complete (Gödel 1929).

http://en.wikipedia.org/wiki/Kurt_G%C3%B6del

Expressiveness vs. Tractability

 There is a fundamental
trade-off between
expressiveness and
tractability in
Artificial Intelligence.

• Similar, even more
difficult issues with
probabilistic reasoning
(later).

expressiveness

Reasoning

power

FOL

1. Horn

clause

2. Prolog

3. Description

Logic

Valiant

????

Summary

 Inference in FOL

 Grounding approach: reduce all sentences to PL and apply propositional inference
techniques.

 FOL/Lifted inference techniques

 Propositional techniques + Unification.

 Generalized Modus Ponens

 Resolution-based inference.

 Many other aspects of FOL inference we did not discuss in class

