

### **SNS COLLEGE OF TECHNOLOGY**



Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#### **DEPARTMENT OF INFORMATION TECHNOLOGY**

19CSE303 - ARTIFICIAL INTELLIGENCE III YEAR IV SEM

#### UNIT II – LOGICAL REASONING

TOPIC-Logic Agents and Propositional Logic



 Can also add goals and utility/performance measures.



# **Knowledge Representation Issues**

- The Relevance Problem.
- The completeness problem.
- The Inference Problem.
- The Decision Problem.
- The Robustness problem.



- Graph-Based Search: State is **black box**, no internal structure, atomic.
- Factored Representation: State is list or vector of facts.
- Facts are expressed in formal logic.





- Constraint Satisfaction Graphs can represent much information about an agent's domain.
- Inference can be a powerful addition to search (arc consistency).
- Limitations of expressiveness:
  - Difficult to specify complex constraints, arity > 2.
  - Make explicit the form of constraints (<>, implies...).
- Limitations of Inference with Arc consistency:
  - Non-binary constraints.
  - Inferences involving multiple variables.



# Logic: Motivation



### • 1<sup>st</sup>-order logic is highly expressive.

- Almost all of known mathematics.
- All information in relational databases.
- Can translate much natural language.
- Can reason about other agents, beliefs, intentions, desires...

# • Logic has **complete** inference procedures.

• All valid inferences can be proven, in principle, by a machine.

• Cook's fundamental theorem of NP-completeness states that all difficult search problems (scheduling, planning, CSP etc.) can be represented as logical inference problems. (U of T).



# Logic vs. Programming Languages

- Logic is declarative.
- Think of logic as a kind of **language** for expressing knowledge.
  - Precise, computer readable.
- A proof system allows a computer to **infer** consequences of known facts.
- Programming languages lack general mechanism for deriving facts from other facts. <u>Traffic Rule Demo</u>

### Logic and Ontologies

- Large collections of facts in logic are structured in hierarchices known as **ontologies** 
  - See chapter in textbook, we're skipping it.
- Cyc: Large Ontology Example.
- Cyc Ontology Hierarchy.
- Cyc Concepts Lookup
  - o E.g., games, Vancouver.



# 1st-order Logic: Key ideas

- The fundamental question: *What kinds of information do we need to represent?* (Russell, Tarski).
- The world/environment consists of
  - Individuals/entities.
  - Relationships/links among them.











# **Knowledge-Based Agents**

### • KB = knowledge base

- A set of sentences or facts
- e.g., a set of statements in a logic language

### • Inference

- o Deriving new sentences from old
- o e.g., using a set of logical statements to infer new ones

### • A simple model for reasoning

- Agent is told or perceives new evidence
  - × E.g., A is true
- Agent then infers new facts to add to the KB
  - E.g.,  $KB = \{A \rightarrow (B \cup C)\}$ , then given A and not C we can infer that B is true
  - B is now added to the KB even though it was not explicitly asserted, i.e., the agent inferred B





## Wumpus World

### • Environment

- Cave of  $4 \times 4$
- Agent enters in [1,1]
- 16 rooms
  - × Wumpus: A deadly beast who kills anyone entering his room.
  - Pits: Bottomless pits that will trap you forever.
  - × Gold







# Wumpus World

### • Agents Sensors:

- Stench next to Wumpus
- o Breeze next to pit
- Glitter in square with gold
- Bump when agent moves into a wall
- Scream from wumpus when killed

### Agents actions

- Agent can move forward, turn left or turn right
- Shoot, one shot







# What is a logical language?

- A formal language
  - KB = set of sentences

#### • Syntax

- what sentences are legal (well-formed)
- E.g., arithmetic
  - X+2 >= y is a wf sentence, +x2y is not a wf sentence

#### • Semantics

- o loose meaning: the interpretation of each sentence
- More precisely:
  - × Defines the truth of each sentence wrt to each possible world

#### o e.g.

- $\times$  X+2 = y is true in a world where x=7 and y =9
- $\times$  X+2 = y is false in a world where x=7 and y =1
- Note: standard logic each sentence is T of F wrt eachworld
  - Fuzzy logic allows for degrees of truth.





# Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- Atomic sentences = single proposition symbols
  - E.g., P, Q, R
  - Special cases: True = always true, False = always false

#### • Complex sentences:

- If S is a sentence,  $\neg$ S is a sentence (negation)
- If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence (conjunction)
- If  $S_1$  and  $S_2$  are sentences,  $S_1 \vee S_2$  is a sentence (disjunction)
- If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence (implication)
- If  $S_1$  and  $S_2$  are sentences,  $S_1 \Leftrightarrow S_2$  is a sentence (biconditional)



# Wumpus world sentences

"Pits cause breezes in adjacent squares"
 B<sub>1,1</sub> ⇔ (P<sub>1,2</sub> ∨ P<sub>2,1</sub>)

 $\begin{array}{c} \mathbf{D}_{1,1} \hookrightarrow & (\mathbf{I}_{1,2} \lor \mathbf{I}_{2,1}) \\ \mathbf{B}_{2,1} \Leftrightarrow & (\mathbf{P}_{1,1} \lor \mathbf{P}_{2,2} \lor \mathbf{P}_{3,1}) \end{array}$ 

| 4 | SS SSS S<br>Stencti S |                                      | Breeze | PIT        |
|---|-----------------------|--------------------------------------|--------|------------|
| 3 |                       | Breeze<br>SSSSSS<br>Stench S<br>Gold | PIT    | Breeze     |
| 2 | 555555<br>Sistendi 5  |                                      | Breeze |            |
| 1 | START                 | Breeze                               | PIT    | - Breeze - |
|   | 1                     | 2                                    | 3      | 4          |

- KB can be expressed as the conjunction of all of these sentences
- Note that these sentences are rather long-winded!
  - E.g., breeze "rule" must be stated explicitly for each square
  - First-order logic will allow us to define more general patterns.



# **Propositional logic: Semantics**

- A sentence is interpreted in terms of **models**, or **possible worlds**.
- These are formal structures that specify a truth value for **each sentence** in a consistent manner.

Ludwig Wittgenstein (1918):

- **1**. The world is everything that is the case.
- 1.1 The world is the complete collection of facts, not of things.
- 1.11 The world is determined by the facts, and by being the *complete* collection of facts.





## More on Possible Worlds



- *m* is a model of a sentence  $\alpha$  if  $\alpha$  is true in *m*
- $M(\alpha)$  is the set of all models of  $\alpha$
- Possible worlds ~ models
  - Possible worlds: potentially real environments
  - Models: mathematical abstractions that establish the truth or falsity of every sentence

#### • Example:

- x + y = 4, where x = #men, y = #women
- Possible models = all possible assignments of integers to x and y.
- For CSPs, possible model = complete assignment of values to variables.
- <u>Wumpus Example Assignment style</u>

# **Propositional logic: Formal Semantics**



Each model/world specifies true or false for each proposition symbol

P<sub>2,2</sub> true E.g. P<sub>1,2</sub> P<sub>3,1</sub> false false With these symbols, 8 possible models, can be enumerated automatically.

#### Rules for evaluating truth with respect to a model *m*: $\neg S$

is true iff S is false

 $S_1 \wedge S_2$  is true iff  $S_1$  is true and S<sub>2</sub> is true  $S_1 \vee S_2$  is true iff  $S_1$  is true or S<sub>2</sub> is true  $S_1 \Rightarrow S_2$  is true iff  $S_1$  is false or i.e., is false iff  $S_1$  is true and  $S_2$  is true  $S_{2}$  is false

 $S_1 \Leftrightarrow S_2$  is true iff  $S_1 \Longrightarrow S_2$  is true and  $S_2 \Longrightarrow S_1$  is true

Simple recursive process evaluates **every** sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$ 



### Truth tables for connectives

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|-------------------|-----------------------|
| false | false | true     | false        | false      | true              | true                  |
| false | true  | true     | false        | true       | true              | false                 |
| true  | false | false    | false        | true       | false             | false                 |
| true  | true  | false    | true         | true       | true              | true                  |







#### Evaluation Demo - Tarki's World

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$  | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|-------------|-------------------|-----------------------|
| false | false | true     | false        | false       | true              | true                  |
| false | true  | true     | false        | true        | true              | false                 |
| true  | false | false    | false        | true        | false             | false                 |
| true  | true  | false    | true         | $\mid true$ | true              | true                  |

Implication is always true when the premise is false

Why? P=>Q means "if P is true then I am claiming that Q is true otherwise no claim" Only way for this to be false is if P is true and Q is false



• *KB* = all possible wumpus-worlds consistent with the observations and the "physics" of the Wumpus world.



Listing of possible worlds for the Wumpus KB

 $\alpha_1$  = "square [1,2] is safe". KB = detect nothing in [1,1], detect breeze in [2,1]

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$   | KB                 | $\alpha_1$  |
|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------------------|-------------|
| false       | false              | true        |
| false     | false     | false     | false     | false     | false     | true        | false              | true        |
| :         | :         | :         | :         | :         | :         | 8<br>8<br>8 | -                  | -           |
| false     | true      | false     | false     | false     | false     | false       | false              | true        |
| false     | true      | false     | false     | false     | false     | true        | <u>true</u>        | true        |
| false     | true      | false     | false     | false     | true      | false       | <u>true</u>        | <u>true</u> |
| false     | true      | false     | false     | false     | true      | true        | $\underline{true}$ | <u>true</u> |
| false     | true      | false     | false     | true      | false     | false       | false              | true        |
| :         | :         | :         | :         | :         | :         | -           | :                  | :           |
| true        | false              | false       |







• One sentence follows logically from another  $\alpha \mid = \beta$ 

 $\alpha$  entails sentence  $\beta$  *if and only if*  $\beta$  is true in all worlds where  $\alpha$  is true.

e.g., 
$$x+y=4 \mid = 4=x+y$$

• Entailment is a relationship between sentences that is based on semantics.



If KB is true in the real world, then any sentence  $\alpha$  derived from KB by a sound inference procedure is also true in the real world.



- Consider possible models for *KB* assuming only pits and a reduced Wumpus world
- Situation after detecting nothing in [1,1], moving right, detecting breeze in [2,1]









# Inferring conclusions

### • Consider 2 possible conclusions given a KB

- $\alpha_1 = "[1,2]$  is safe"
- $\alpha_2 = "[2,2]$  is safe"

### • One possible inference procedure

- Start with KB
- Model-checking
  - × Check if KB  $\models \alpha$  by checking if in all possible models where KB is true that  $\alpha$  is also true

### • Comments:

- Model-checking enumerates all possible worlds
  - × Only works on finite domains, will suffer from exponential growth of possible models





- There are some models entailed by KB where  $\alpha_2$  is false.
- O <u>Wumpus Example Assignment style</u>





- The notion of entailment can be used for inference.
  Model checking (see wumpus example): enumerate all possible models and check whether *α* is true.
- If an algorithm only derives entailed sentences it is called *sound* or *truth preserving*.
- A proof system is **sound** if whenever the system derives α from KB, it is also true that KB|= α *E.g., model-checking is sound*
- Completeness : the algorithm can derive any sentence that is entailed.
- A proof system is **complete** if whenever  $KB| = \alpha$ , the system derives  $\alpha$  from KB.





## Inference by enumeration

• We want to see if  $\alpha$  is entailed by KB

- Enumeration of all models is sound and complete.
- But...for *n* symbols, time complexity is  $O(2^n)$ ...
- We need a more efficient way to do inference
  - But worst-case complexity will remain exponential for propositional logic



# Logical equivalence



- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models:  $\alpha \equiv \beta$  iff  $\alpha \models \beta$  and  $\beta \models \alpha$

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$







- Show that *P* implies *Q* is logically equivalent to (not *P*) or *Q*. That is, one of these formulas is true in a model just in case the other is true.
- A **literal** is a formula of the form P or of the form not P, where P is an atomic formula. Show that the formula (*P* or *Q*) and (not *R*) has an equivalent formula that is a disjunction of a conjunction of literals. Thus the equivalent formula looks like this: [literal 1 and literal 2 and ....] or [literal 3 and ...]







- CSPs are a special case as follows.
- The atomic formulas are of the type Variable = value.
- E.g., (WA = green).
- Negative constraints correspond to negated conjunctions.
- E.g. not (WA = green and NT = green).



Exercise: Show that every (binary) CSP is equivalent to a conjunction of literal disjunctions of the form [variable 1 = value 1 or variable 1 = value 2 or variable 2 = value 2 or ....] and [...]



• Theorem: Any KB can be converted into an equivalent CNF.

• k-CNF: exactly k literals per clause





### **Example: Conversion to CNF**

 $B_{\scriptscriptstyle 1,1} \Leftrightarrow (P_{\scriptscriptstyle 1,2} \lor P_{\scriptscriptstyle 2,1})$ 

- 1. Eliminate  $\Leftrightarrow$ , replacing  $\alpha \Leftrightarrow \beta$  with  $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ .  $(B_{_{1,1}} \Rightarrow (P_{_{1,2}} \lor P_{_{2,1}})) \land ((P_{_{1,2}} \lor P_{_{2,1}}) \Rightarrow B_{_{1,1}})$
- 2. Eliminate  $\Rightarrow$ , replacing  $\alpha \Rightarrow \beta$  with  $\neg \alpha \lor \beta$ .  $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move  $\neg$  inwards using de Morgan's rules and double-negation:  $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributive law ( $\land$  over  $\lor$ ) and flatten:  $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$







**Horn Clause** = A clause with at most 1 positive literal.

- e.g.  $A \lor \neg B \lor \neg C$
- Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and at most a single positive literal as a conclusion.

e.g.  $B \wedge C \Rightarrow A$ 

- 1 positive literal: definite clause
- o positive literals: Fact or integrity constraint: e.g.  $(\neg A \lor \neg B) \equiv (A \land B \Rightarrow False)$
- Psychologically natural: a condition implies (causes) a single fact.
- The basis of **logic programming** (the prolog language). <u>SWI Prolog</u>. <u>Prolog and the Semantic Web</u>. <u>Prolog Applications</u>







• Logical agents apply inference to a knowledge base to derive new information and make decisions

- Basic concepts of logic:
  - o syntax: formal structure of sentences
  - o semantics: truth of sentences wrt models
  - o entailment: necessary truth of one sentence given another
  - o inference: deriving sentences from other sentences
  - o soundness: derivations produce only entailed sentences
  - completeness: derivations can produce all entailed sentences.
- The Logic Machine in Isaac Asimov's Foundation Series.

