{1 SNS COLLEGE OF TECHNOLOGY S S

- . TIS T (15
& Coimbatore-35 o

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSES303 - ARTIFICIAL INTELLIGENCE
11 YEAR IV SEM

UNIT Il - LOGICAL REASONING

TOPIC — Unification & Lift



Uitz

OMega TechEd

Inference rules for quantifiers

The rule of Universal Instantiation (Ul for short) says that we can infer any sentence obtained by
substituting a ground term (a term without variables) for the vanable. It can be applied multiple times to
add new sentences.

Suppose our knowledge base containg the axiom stating that
All greedy kings are evil: ¥ x King(x) A Greedy(x) = Evil(x)
Then it seems quite permissible to infer any of the following sentences:

King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(Father (John)) A Greedy(Father (John)) = Evil(Father (John)) .

Let SUBST(0,0) denote the result of applying the substitution 0 to the sentence a. Then the rule is
writlen

Vv

SUBST({v/g}, 0)



'q’n \{‘ = R
LW BN e
o AT T TIOTS

OMega TechEd

Inference rules for quantifiers

[n the rule for Existential Instantiation, the variable is replaced by a single new constant symbol, It
can be applied only once to replace the existential sentence.

The formal statement is as follows: for any sentence «, vanable v, and constant symbol k that does not
appear elsewhere in the knowledge base,

v
SUBST({v&}, ).

For example, from the sentence 3 x Crown(x) A OnHead(x, John)

we can infer the sentence Crown(C1) A OnHead(C1, John) as long as C1 does not appear
elsewhere in the knowledge base,

The existential sentence says there 1s some object satisfying a condition and applying the
existential instantiation rule just gives & name to that object, this is called as Skolem constant,



Uitz

OMega TechEd

Generalized Modus Ponens Rule

¥ x King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)

Ix/John} solves the query Evil(x).

In this case, the substitution 0 = |x/John].
Suppose that instead of knowing Greedy(John), we know that everyone is greedy
¥y Greedy(y)

We have to find a substitution both for the vanables in the implication sentence and for the
variables in the sentences that are in the knowledge base. In this case, applying the substitution
{x/John, y/John} to the implication premises King(x) and Greedy(x) and the knowledge-base
sentences King(John) and Greedy(y) will make them identical,

Thus, we can infer the conclusion of the implication. This inference process can be captured as a
single inference rule that we call Generalized Modus Ponens.



ot BB ITY 1175
VANSY

OMega TechEd

Generalized Modus Ponens Rule

For atomic sentences pi, pi* , and g, where there is a substitution 0
such that SUBST(O, pi* ) = SUBST(0, pi), for all i,
pl*,p2' ,opn’ L (pIAP2A..Apn=q)

SUBST(0, q)

There are n+ | premises to this rule: the n atomic sentences pi and the one implication,

The conclusion is the result of applying the substitution 0 to the consequent q, For our example:
pl*is King(John) pl is King(x)

p2"is Greedy(y) p2 is Greedy(x)

tis {x/John, y/John} q is Evil(x)

SUBST(0, q) 1s Evil(John) .

Generalized Modus Ponens 15 a lifted version of Modus Ponens—it raises Modus Ponens from
ground (variable-free) propositional logic to first-order logic,



Uitz

OMega TechEd

Unification

Lified inference rules require finding substitutions that make different logical expressions look
identical. This process is called unification and is a key component of all first-order inference
algorithms,

The UNIFY algorithm takes two sentences and returns a unifier for them if one exists;

Substitution means replacing one variable with another term, It takes two literals as input and make
them identical using substitution, It returns fail if the expressions do not match with each other.

UNIFY(p, q) = 0 where SUBST(0, p) = SUBST(0, q)
Example: P(x,y) (1)
Pla, f{z)) (1i)
Substitute x with a, and y with {z) in the first expression and it will represented as a/x and f(z)/y.

With both the substitution the first expression will be identical to the second expression and the
substitution set will be |a/x, f(z)/y]




'\!’\'I"Lh'v'-
.'éjn )
2
?"’z.ﬁ

VAR

Uitz

OMega TechEd

Unification

Given | Knows(John, x) is a predicate.

whom does John know”

The UNIFY algonthm will search all the related sentences in the knowledge base , which could
unify with Knows(John, x)

UNIFY(Knows(John, x), Knows(John, Jane)) = |x/Jane]
UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, v/John}
UNIFY(Knows(John, x), Knows{x,Elizabeth)) = fail,

The last unification fails because x cannot take on the values John and Ehzabeth at the same time,



cv"‘f‘“‘“'vh
R \
SRR
o ¢ G
<‘_1»-‘6'~-rjr
"lﬁ'\‘

OMega TechEd

Conditions for Unification

I. - Predicate symbol must be same,

Knows(John, Jane)
Brother(John, Jane) fail
% Number of arguments in both expressions must be identical,
Hate(Marry)
Hate(Marry, John) fail
. Unification will fail if there are two similar variables present in the same expression,
UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail,



THANK YOU

-~

>

[

-

LIS



