
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE

III YEAR IV SEM

UNIT II – LOGICAL REASONING

TOPIC – GraphPlan

2

GraphPlan
http://www.cs.cmu.edu/~avrim/graphplan.html

 Many planning systems use ideas from Graphplan:

 IPP, STAN, SGP, Blackbox, Medic, FF, FastDownward

 History

 Before GraphPlan appeared in 1995, most planning researchers were working

under the framework of “plan-space search” (we will not cover this topic)

 GraphPlan outperformed those prior planners by orders of magnitude

 GraphPlan started researchers thinking about fundamentally different

frameworks

 Recent planning algorithms are much more effective than GraphPlan

 However, many have been influenced by GraphPlan

3

Big Picture

 A big source of inefficiency in search algorithms is the large branching factor

 GraphPlan reduces the branching factor by searching in a special data structure

 Phase 1 – Create a Planning Graph

 built from initial state

 contains actions and propositions that are possibly reachable from initial state

 does not include unreachable actions or propositions

 Phase 2 - Solution Extraction

 Backward search for the solution in the planning graph

 backward from goal

4

Layered Plans
 Graphplan searches for layered plans (often called parallel plans)

 A layered plan is a sequence of sets of actions

 actions in the same set must be compatible

 a1 and a2 are compatible iff a1 does not delete preconditions or positive effects of

a2 (and vice versa)

 all sequential orderings of compatible actions gives same result

?

D
A
B

C D
A
B

C

move(A,B,TABLE)

move(C,D,TABLE)

move(B,TABLE,A)

move(D,TABLE,C);

Layered Plan: (a two layer plan)

5

Executing a Layered Plans
 A set of actions is applicable in a state if all the actions are applicable.

 Executing an applicable set of actions yields a new state that results from

executing each individual action (order does not matter)

D
A
B

C
move(A,B,TABLE)

move(C,D,TABLE)
move(B,TABLE,A)

move(D,TABLE,C)

D
A
B

CD AB C

6

Planning Graph

 A planning graph has a sequence of levels that correspond to

time-steps in the plan:

 Each level contains a set of literals and a set of actions

 Literals are those that could possibly be true at the time step

 Actions are those that their preconditions could be satisfied at the

time step.

 Idea: construct superset of literals that could be possibly

achieved after an n-level layered plan

 Gives a compact (but approximate) representation of states that are

reachable by n level plans

A literal is just a positive or negative propositon

7

Planning Graph

…

…

…

s0 sn

…

…

…

an Sn+1

propositions

actions

state-level 0:

propositions true

in s0

state-level n: literals that

may possibly be true after

some n level plan

action-level n: actions that

may possibly be applicable

after some n level plan

8

Planning Graph

…

…

…
…

…

…

propositions

actions

 maintenance action (persistence actions)

 represents what happens if no action affects the literal

 include action with precondition c and effect c, for each literal c

9

Graph expansion

 Initial proposition layer

 Just the propositions in the initial state

 Action layer n

 If all of an action’s preconditions are in proposition layer n,
then add action to layer n

 Proposition layer n+1

 For each action at layer n (including persistence actions)

 Add all its effects (both positive and negative) at layer n+1

(Also allow propositions at layer n to persist to n+1)

 Propagate mutex information
(we’ll talk about this in a moment)

10

Example

holding(A)

clear(B)

holding(A)

~holding(A)

clear(B)
on(A,B)

handempty

~clear(B)
stack(A,B)

stack(A,B)

precondition: holding(A), clear(B)

effect: ~holding(A), ~clear(B), on(A,B), clear(B), handempty
s0 a0 s1

11

Example

holding(A)

clear(B)

holding(A)

~holding(A)

clear(B)
on(A,B)

handempty

~clear(B)
stack(A,B)

stack(A,B)

precondition: holding(A), clear(B)

effect: ~holding(A), ~clear(B), on(A,B), clear(B), handempty
s0 a0 s1

Notice that not all literals in s1 can be made true simultaneously after 1 level:

e.g. holding(A), ~holding(A) and on(A,B), clear(B)

12

Mutual Exclusion (Mutex)

 Mutex between pairs of actions at layer n means

 no valid plan could contain both actions at layer n

 E.g., stack(a,b), unstack(a,b)

 Mutex between pairs of literals at layer n means

 no valid plan could produce both at layer n

 E.g., clear(a), ~clear(a)

on(a,b), clear(b)

 GraphPlan checks pairs only

 mutex relationships can help rule out possibilities during search in

phase 2 of Graphplan

13

Action Mutex: condition 1

Inconsistent effects
 an effect of one negates an effect of the

other

E.g., stack(a,b) & unstack(a,b)

add handempty delete handempty
(add ~handempty)

14

Action Mutex: condition 2

Interference :
 one deletes a precondition of the other

E.g., stack(a,b) & putdown(a)

deletes holdindg(a) needs holding(a)

15

Action Mutex: condition 3

Competing needs:
 they have mutually exclusive preconditions

 Their preconditions can’t be true at the same

time

16

Literal Mutex: two conditions

Inconsistent support :
 one is the negation of the other

E.g., handempty and ~handempty

 or all ways of achieving them via actions are

are pairwise mutex

17

Example – Dinner Date

Suppose you want to prepare dinner as a surprise
for your sweetheart (who is asleep)
 Initial State: {cleanHands, quiet, garbage}

Goal: {dinner, present, ~garbage}

Action Preconditions Effects

cook cleanHands dinner

wrap quiet present

carry none ~garbage, ~cleanHands

dolly none ~garbage, ~quiet

Also have the “maintenance actions”

18

Example – Plan Graph Construction
s0 a0

garbage

cleanhands

quiet

carry

dolly

cook

wrap

Add the actions that can be

executed in initial state

19

Example - continued
s0 a0 s1

garbage

~garbage

cleanhands

~cleanhands

quiet

~quiet

dinner

present

garbage

cleanhands

quiet

carry

dolly

cook

wrap
Add the literals that can be

achieved in first step

20

Example - continued

Carry, dolly is mutex with maintenance actions

(inconsistent effects)

dolly is mutex with wrap

Interference (about quiet)

Cook is mutex with carry

about cleanhands

s0 a0 s1

garbage

~garbage

cleanhands

~cleanhands

quiet

~quiet

dinner

present

garbage

cleanhands

quiet

carry

dolly

cook

wrap

~quiet is mutex with present,

~cleanhands is mutex with dinner

inconsistent support

21

Do we have a solution?

garbage

~garbage

cleanhands

~cleanhands

quiet

~quiet

dinner

present

garbage

cleanhands

quiet

carry

dolly

cook

wrap

The goal is: {dinner, present,~garbage}

All are possible in layer s1

None are mutex with each other

There is a chance that a plan exists

Now try to find it – solution extraction

22

Solution Extraction: Backward Search

Repeat until goal set is empty

If goals are present & non-mutex:
1) Choose set of non-mutex actions

to achieve each goal

2) Add preconditions to next goal set

23

Searching for a solution plan
 Backward chain on the planning graph

 Achieve goals level by level

 At level k, pick a subset of non-mutex actions to achieve current goals. Their

preconditions become the goals for k-1 level.

 Build goal subset by picking each goal and choosing an action to add. Use one

already selected if possible (backtrack if can’t pick non-mutex action)

 If we reach the initial proposition level and the current goals are in that level (i.e.

they are true in the initial state) then we have found a successful layered plan

Possible Solutions

garbage

~garbage

cleanhands

~cleanhands

quiet

~quiet

dinner

garbage

cleanhands

quiet

carry

dolly

cook

• Two possible sets of actions for the goals at layer s1:

{wrap, cook, dolly} and {wrap, cook, carry}

• Neither set works -- both sets contain actions that are mutex

25

Add new layer…
Adding a layer provided new ways to achieve propositions

This may allow goals to be achieved with non-mutex actions

26

Do we have a solution?

Several action sets look OK at layer 2

Here’s one of them

We now need to satisfy their preconditions

27

Do we have a solution?
The action set {cook, quite} at layer 1 supports preconditions

Their preconditions are satisfied in initial state

So we have found a solution:

{cook} ; {carry, wrap}

28

Another solution:
{cook,wrap} ; {carry}

29

GraphPlan algorithm
 Grow the planning graph (PG) to a level n such that all goals are reachable and not

mutex

 necessary but insufficient condition for the existence of an n level plan that achieves the
goals

 if PG levels off before non-mutex goals are achieved then fail

 Search the PG for a valid plan

 If none found, add a level to the PG and try again

 If the PG levels off and still no valid plan found, then return failure

Termination is guaranteed by PG properties

This termination condition does not guarantee completeness. Why?

A more complex termination condition exists that does, but we won’t cover in class (see book
material on termination)

30

Propery 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

31

Property 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

32

Properties 3

• Proposition mutex relationships monotonically decrease

• Specifically, if p and q are in layer n and are not mutex then

they will not be mutex in future layers.

p

q

r

…

A

p

q

r

…

p

q

r

…

33

Properties 4

Action mutex relationships monotonically decrease

p

q

…

B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

34

Properties 5
Planning Graph ‘levels off’.

After some time k all levels are identical

 In terms of propositions, actions, mutexes

This is because there are a finite number of

propositions and actions, the set of literals

never decreases and mutexes don’t

reappear.

35

Important Ideas
 Plan graph construction is polynomial time

 Though construction can be expensive when there are many
“objects” and hence many propositions

 The plan graph captures important properties of the planning
problem

 Necessarily unreachable literals and actions

 Possibly reachable literals and actions

 Mutually exclusive literals and actions

 Significantly prunes search space compared to previously
considered planners

 Plan graphs can also be used for deriving admissible (and good
non-admissible) heuristics

36

Planning Graphs for Heuristic Search

 After GraphPlan was introduced, researchers found other uses for

planning graphs.

 One use was to compute heuristic functions for guiding a search

from the initial state to goal

 Sect. 10.3.1 of book discusses some approaches

 First lets review the basic idea behind heuristic search

37

Planning as heuristic search
 Use standard search techniques, e.g. A*, best-first, hill-climbing etc.

 Find a path from the initial state to a goal

 Performance depends very much on the quality of the “heuristic” state

evaluator

 Attempt to extract heuristic state evaluator automatically from the Strips

encoding of the domain

 The planning graph has inspired a number of such heuristics

38

Review: Heuristic Search

 A* search is a best-first search using

node evaluation

f(s) = g(s) + h(s)

where

g(s) = accumulated cost/number of actions

h(s) = estimate of future cost/distance to goal

 h(s) is admissible if it does not overestimate the cost to goal

 For admissible h(s), A* returns optimal solutions

39

Simple Planning Graph Heuristics

 Given a state s, we want to compute a heuristic h(s).

 Approach 1: Build planning graph from s until all goal facts are present

w/o mutexes between them

 Return the # of graph levels as h(s)

 Admissible. Why?

 Can sometimes grossly underestimate distance to goal

 Approach 2: Repeat above but for a “sequential planning graph” where

only one action is allowed to be taken at any time

 Implement by including mutexes between all actions

 Still admissible, but more accurate.

40

Relaxed Plan Heuristics
 Computing those heuristics requires “only” polynomial time, but must be

done many times during search (think millions)

 Mutex computation is quite expensive and adds up

 Limits how many states can be searched

 A very popular approach is to ignore mutexes

 Compute heuristics based on relaxed problem by assuming no delete effects

 Much more efficient computaiton

 This is the idea behind the very well-known planner FF (for FastForward)

 Many state-of-the-art planners derive from FF

41

Heuristic from Relaxed Problem
Relaxed problem ignores delete lists on actions

The length of optimal solution for the relaxed problem

PutDown(A,B):

PRE: { holding(A), clear(B) }

ADD: { on(A,B), handEmpty, clear(A)}

DEL: { holding(A), clear(B) }

PutDown(B,A):

PRE: { holding(B), clear(A) }

ADD: { on(B,A), handEmpty, clear(B) }

DEL: { holding(B), clear(A) }

PutDown(A,B):

PRE: { holding(A), clear(B) }

ADD: { on(A,B), handEmpty, clear(A)}

DEL: { }

PutDown(B,A):

PRE: { holding(B), clear(A) }

ADD: { on(B,A), handEmpty, clear(B) }

DEL: { }

Problem Relaxation

42

Heuristic from Relaxed Problem

 BUT – still finding optimal solution to relaxed problem is NP-hard

 So we will approximate it

 …. and do so very quickly

 One way is to explicitly search for a relaxed plan

 Finding a relaxed plan can be done in polynomial time using a planning graph

 Take relaxed-plan length to be the heuristic value

 FF (for FastForward) uses this approach

43

FF Planner: finding relaxed plans
 Consider running Graphplan while ignoring the delete lists

 No mutexes (avoid computing these altogether)

 Implies no backtracking during solution extraction search!

 So we can find a relaxed solutions efficiently

 After running the “no-delete-list Graphplan” then the # of actions in layered plan is

the heuristic value

 Different choices in solution extraction can lead to different heuristic values

 The planner FastForward (FF) uses this heuristic in forward state-space best-first

search

 Also includes several improvements over this

44

Example: Finding Relaxed Plans

Heuristic value = 3 Heuristic value = 4

Relaxed plan graph

(no mutexes)

The value returned

depends on particular

choices made in the

backward extraction

45

Summary
 Many of the state-of-the-art planners today are based on heuristic search

 Popularized by the planner FF, which computes relaxed plans with blazing speed

 Lots of work on make heuristics more accurate without increasing the computation time too

much

 Trade-off between heuristic computation time vs. heuristic accuracy

 Most of these planners are not optimal

 The most effective optimal planners tend to use different frameworks (e.g. planning as satisfiability)

46

Endgame Logistics

 Final Project Presentations

 Tuesday, March 19, 3-5, KEC2057

 Powerpoint suggested (email to me before class)

 Can use your own laptop if necessary (e.g. demo)

 10 minutes of presentation per project

 Not including questions

 Final Project Reports

 Due: Friday, March 22, 12 noon

47

THANK YOU

