UNIT IV
Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space
Search, Planning Graphs, other Classical Planning Approaches, and Analysis of Planning
Approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical

Planning, Planning and Acting in Mondeterministic Domains, Multi-agent Planning.

Knowledge representation: -
= The task of coming up with a sequence of actions that will achicve a goal is called Planning.
“Deeiding in ADVANCE what is to be dome”
A problem solving methodology
Generating a set of action that are likely to lead o achieving a goal
Deciding on a course of actions before acting
Representation for states and Goals:-
o Inthe STRIPS lunguage, states are represented by conjunctions of function-free
ground literals, that is, predicates applicd to constant symhbaols, possibly negated.
o For example,
At{Home)® — Have(Milk)* — Have{Bananas)® — Have{Drill)*....
o Goals are also described by conjunctions of literals,
o For example,
At{Home)" Have[MIilk)* Hove{Bananas)" Have{Drill)
o Coals con also contain variables. For example, the goal of baang at a store that sells
milk would be represented as
* Representation for actions:-
o Our STRIPS operators consist of three components:
o the actfon deseription is what an agent actually returns to the environment in order to
do something,
o the precendition is a conjunction of atoms (positive literals) that savs what must be
true before the operator can be applied.
o the gffiecr of an operator is a conjunction of literals (positive or negative) that
deseribes how the situation changes when the operator is applied.
o Here's on example for the operator for going from one plice to another:
= OpfAction:Go(there),
= Precond:At{here)* Pathihere, there),
= Effect:Atithere)® —At(here))
» Representation of Plans:-
o Consider a simple problem:
o Putting on a pair of shoes
o CGoal 2 RighShoeOn * LefiShoeOn
o Four operators:

OpiAction: RightShoe, PreCond: RightSockOn, EfMect: RightS hoeON)
Op{Action:RightSock , Effect: RightSockOn)
Op{Action:LeftShoe, Precond:LeftSockOn, Effect: LeftShoeOn)
OpiAction:LeftSock. Effeci: LefiSockOin)
Given:-
A description of an initial state
* A sel of actions
« A (partinl) description of o goal state
Problem:-
o Find a sequence of actions {plan) which transforms the imitial state into the goal state.
Application areas:-
s Systems design
& Budgeting
* Manufacturing product
Robot programming and control
o Military activities
Benefits of Planning:-
* [Reducing search
* [Resolving goal conflicts
* Providing basis for error recovery

3.1 Planning with State Space Search:

Planming with state space search approach 15 used 1o construct a planning algorithm,
This is most straightforward approach,
The deseription of actions in a planning problem specifies both preconditions and effects.
It is possible to scarch in cither direction,
Either from forward from the initial state or backward from the goal
The following are the two types of state space search
o Forward state-space scarch
o Backward state-space search
o The following dingram shows the Forward state-space scarch

At(P1,B)
Fly(P1,A.B) AlPZ, A)
AtPLA)
AI{P2, A)
Fly(P2,A.B) AKPLAY
ALP2, B)

X1 Forward state-space search:-

* [lanning with forward state-space search is similar w the problem solving using Searching.

s [t is sometimes called as progression Planning.
* It moves in the forward direction,
 westart in the problems initial state, considering sequence of actions until we find a sequence
that reaches a goal stote,
* The formulation of planning problems as state-space scarch problems is as follows,
o The Initial state of the search 15 the il state from the planning problem.
o :_nlgcncrnl. cach state will be o set of positive ground literals; litermls not appearing are
alse.
o The actions that are applicable to a state are all those whose preconditions are
satisfied,
o The sueeessor state resulting from an action is generated by adding the positive effect
literals and deleting the negative effect literals.
o The goal test checks whether the state satisfics the goal of the planning problem.
o The step cost of each action is typically 1,
s This method was too inefficient.
= |t does not address the irrelevant action problem, (i.e.) all applicable actions are considered
from each state.
o This approach quickly bogs down without a good heuristics,
* For Example:-
o Consider an air cargo problem with 10 airports, where cach airport has 5 plancs and
20 pieces of cargo.
o The Goal is to move the entire eargo form airport A to airport B,
o There is & simple solution to the Problem,
o Load the 20 picces of cargo into one of the plancs at A, then fly the plane o B, and
unload the cargo.
o But finding the solution can be difficult because the average branching factor is huge.

312 Backward state- space search:-

s Backward search is similar 1o bidirectional search,

* [t can be difficult to implement when the goal states are described by a set of constraings
rather than being listed explicitly.

* [t is not always obvious how to generate a deseription of the possible predecessors of the se
of goal states.

* The moin advantage of this search is that it allows us to consider only relevant actions.

* Anaction is relevant to a conjunctive goal if it achieves one of the conjuncts of the geal,

* The following dingram shows the Backward state-space search

AUPLLA)
ALP2, B) Fly(P1,A,B)
AP1,B)
AUP2, B)
A(PIB) Fly(P2,A,B)

AUPZ, A)

* [For example:-
o The goal in our 10-airport cargo problem is to have 20 picces of cargo at airport B, or
mare precisely,
AUCLB) A AUCZE) A...... A AC20,B)
o MNow consider the conjunct ANC1,B). working backwards, we can seck actions that
hawve this as an effect. There is only one unload(C1.p,B), where plane p is unspecified.
o In thiz search restriction 1o relevant actions means that backward search often has a
much lower branching factor than forward seanch.
+ Scarching backwards 15 sometimes called regression planning.
* The principal question is:- what are the states from which applying a given action leads to the
goal?
¢ Computing the deseription of these states is called regressing the goal through the action.
consider the air cargo example:= we have the goal as,
ACLB) A AHCLB) A AALC20.B)
and the relevant action UnloadiC1.,p.B), which achieves the first conjunct.
* The action will work only if its preconditions are satisfied.
¢ Therefore , any predecessor state must include these preconditions @ InfCLp) A AupB),
Morcover the subgoal A CEB) should not be true in the predecessor state,
o The predecessor description 1%
In(ClLp) ~AUp.B) & AHCLB) ~...... & AHC20,B)
* |n addition to insisting that actions achicve some desired literal, we must insist that the
actions not undo any desired hiterals.
& Anaction that satisfies this restriction is called consistent.
* From definitions of relevance and consistency, we can describe the general process of
constructing predecessors for backward search.
o Given a goal description G, let A be an action that s relevamt and consisient. The
corresponding predecessor is as follows
o any positive effects of A that appear in G are deleted
o Each precondition literal of A is added, unless it already appears
Termination occurs when a predecessor description is generated that is satisficd by the initial
state of the planning problem.

X132 Heuristics for State-space scarchi-
Hewristic Estimate:-

* The value of a state is a megsure of how close it is toa goal state,
* This cannot be determined exactly (too hard), but can be approximated.
» One way of approximating is to use the relaxed problem
* Relaxation is achieved by ignoring the negative effects of the actions.
* The relaxed action set, A, is defined by:
A'= |<prela)addial0= |ain A}

Artificial [ntelligence CSENNYrViSem UNIT-NIPLANNING

Relaxed Distance Estimate

= Current: In(A), Closed Goal: In(B)

noop

\ noop
\ i

Layer 1 Layer2 Layer3

* Layers correspond to successive time points,

= #layers indicate minimum time to achieve goals.

Building the relaxed plan graph:-
* Start ot the initial state
* Repeatedly apply all refaxed actions whose preconditions are satisfied.
o Their (positive) effects are asseried at the next liyver,
* Il all actions applied and the goals are not
all present in the final graph layer
Then the problem is unsolvable,

Extracting Relaxed solution

* When a layer containing all of the goals is reached (FF searches bockwardys for a plan.
* The earliest possible achiever is always used for any goal.
* This maximees the possibility for exploiting actions in the relaxed plan,
* The relaxed plan might contain many actions kappening concurrently at a layer.
* The number of actions in the relaxed plan is an estimate of the true cost of achieving the
goals.

How FF uses the Heuristics:=

®* FF uses the heuristie to estimate how close each state is 1o a goal state
® any state satisfying the goal propositions.

* The actions in the relaxed plan are used as a guide to which actions 1o explore when
extending the plan.

= All actions in the relaxed plan at laver i that achieve at least one of the goals required
at layer i+1 are considered helpful,

* FF restricts attention to the helpful actions when searching forward from a state,

Properties of the Heuristics:-

* The relaxed plan that s extracted is not pusranteed to be the optimal relaxed plan.
=¥ the heuristic is not admissible,

* FF can produce non-opiimal solufions.

* Focusing only on helpful actions is not completeness preserving.
=» Enforced hill-climbing is not completencss preserving.

3.2 Partial Order Planning:-

¢ Formally o planning algorithm has three inputs:
o A description of the world insome formal langusge,
o A deseription of the agent's goal in some formal language, and
o A description of the possible actions that can be performed.
* The planner’s o'p is o sequence of actions which when exceuted in any world satisfying the
mitial state description will achieve the goal.
* Representution for states and Goals:-
o Inthe STRIPS language, states are represented by conjunctions of function-frece
ground literals, that s, predicates applied to constant symbaols, possibly negated.
o For example,
At{Home)” — Have{Milk)® — Have{Bananas)® — Have{ Drill)®....
o Goals are also described by conjunctions of literals.
o For example,
At{Home)* Have(Milk)* Have{Bananas)® Have(Drill)
o Gioals can also contain variables. For example, the goal of being at a store that sells
milk would be represented as
* Representation for actions:-
o Cur STRIPS operators consist of three components:
o the action deseription is what an agent actually retums 1o the environment in order o
do something.
o the precendition is a conjunction of aloms (positive literals) that savs what must be
true before the operator can be applied.
o the effecr of an operator is a conjunction of literals {positive or negative) that
describes how the situation changes when the operator is applied.
o Here's an example for the operator for going from one place to another:
= OplAction:Go{there),
= Precomd: At{here)” Path{here, there),
= Effect:Atithere)™ ~At(here))
Representation of Plans:-
o Consider a simple problem:
o Puiting on a pair of shoes
o Goal 2 RightShoeOn © LeftShoeOn
o Four operators;

OpiAction: Rights hoe, PreCond : RightSockOn, E ffect: RightS hoeON)
OplAction: RightSock , Effect: RightSockOn)
OplAction:LeftShoe, Precond:LeftSockOn, Effect:LefiShoeOn)
OpiAction: LelSock, Effect: LefiSockOn)
Least Commitment:- The general strategy of delaving a choice during search is colled Least
commitment.
Partial-order Planner;- Any planning algorithm that can place two actions into a plan
withotit specifying which come first is called a partial order planner.
Lincarization:- The partial-order solution corresponds o six possible total order plans ; cach
of these is called a linearization of the partial order plan,
Total order planner:- Planner in which plans consist of a simple lists of steps.
A plan is defined as a data structure
o A set of plan steps
o A set of step ordering
o A set of varinble binding constraints
o Asectofcousal links :s; © 5
"5 achicves ¢ for 5™
Inmitial plan before any refinements
Start < Finish
Refine and mamipulate until a plan that 15 a solution

Plan(STEPS:{ §): Op(ACTION:Start),
S2: Op(AcTiOoN: Finish,
PRECOND:RightShoeOn A LeftShoeOn)},
ORDERINGS: {5) < 51},
BINDINGS: { },

Links: {})
Start Start
Initial | Stare
Gioal ¢ Stare mmmm.lnwmnn
Finish Finish
(a) (b)

Figure 114 (a) Problems are defined by partisl plans conaining only Sters and Finish steps.
The initial state is entered as the effects of the Start step, and the goal state is the precondition of
the Finish step. Ordering constrainis are shown as arrows between boxes. (b) The initial plan for
the shoes-and-socks problem.

s The following diagram shows the partial order plan for putting on shoes and socks, and the
six corresponding lincarteation nto wtal order plans,

Partial Order Plans: Total Order Plans

Start Start | Start | Start | | Start | Start | Start

! ' ! + ' !
Right = | Raght | Lent Lefi | Right || Left
Righi Sock Sock | Sock Sock || Sock || Sock

2.1 N W D N ' T

Left [Left | [Right [Right | [Right | Left
Lft Sqek on Rigit Sock on Sock | Sock Sock | Sock | | Shoe | Shoe

£8

ﬁ;g, mw | [[[[T]
Wik il = Raght Left | Rught | Lefi Left | Fught
Shoe Sock || Shoe | Shoe Sock | Sock

Left ol Shoeon 1 | l
Left R;glll Left || Faght | Left | Right
Finish Shoe Shoe || Shoe | Shoe | Shoe | Shoe

Finish | Finish | Finish | Finish | Finish | Finish

& Solutions
o solution ; a plan that an agent guarantees achievement of the goal
o asolution is a complete and consistent plan
o acomplete plan : every precondition of every step is achieved by some other siep
o

a consistent plan : no contradictions in the ordering or binding constrainis, When we
meet a inconsistent plan we backirack and try another branch

311 Partinl order planning Algorithm:-
The following is the Partinl order planning algorithm,

function pop(initial-state, conjunctive-goal, operators)
1 non-deterministic algorithim
plan = make-initial-plan(initinl-state, conjunctive-goal);
loop:
(0
il solution?{plan) then return plan:
{5-need, ©) = select-subgoal(plan) ; // choose an unsolved goal
choose-operator{plan, operators, S-need, o)
/f select an operator to solve that goal and revise plan

resolve-threatsiplany; / fix any threats created
end

Fajga

end

function solution?iplan}
il causal-links-cstablishing-all-preconditions-of-all-steps(plan)
and all-threats-resolved(plan)
and all-temporal-ordering-constraints-consistenti plan)
and all-varable-bindings-consistent{plan)
then return truc;
else return false;
end

function sclect-subgoaliplan)
pick a plan step S-need from stepsiplan) with a precondition
that has not been achieved;
return { S-reed, cf;
end

procedure choosc-operaton|plan, operators, S-necd, ©)
I solve "open precondition” of some step
choose o step S-add by cither
Step Addition: adding o new step from operators that
has ¢ in its Add-list
or Sinygde Extublishmens: picking an existing step in Steps(plan}
that has ¢ inits Add-list;
if no such step then return fail;
add causal link "S-add —>¢ S-need” w0 Links{plan);

add temporal ordering constraint "S-aded < S-reed™ 1o Orderings(plan);

il S-aaded 15 0 newly added step then

n

adid S-adid to Stepsiplan);

add "Srart < Seadd™ and "S-add < Finish" 1o Orderingsiplan);
end

end

procedure resolve-threats{plan)
foreach S-threat that threatens link “S7 —>¢ 5" in Links{plan}
begin /7 "declobber” threst
choose cither
Desnotion: add "S-threar < 57" 1o Orderings(plan)
or Promotion: add "5 < S-threa” w0 Orderings(plan);
i mt{consistent(plan]) then return fail;
end
end

* Partial Order Planning Example:-

o Shopping problem: “get milk, banana, dnll and bring them back home™

o assumplion
11Go action “can travel the two locations”
2o need money

F‘ggg:g

initial state : operator start

Op(ACTION:Start, EFFECT:At{Home) A SellstHWS Drill) » Sells(SM, Milk),
Sells{SM. Banann))
goal state : Finish

Op{ ACTION: Finish, PRECOND:HaveDrill) » Have(Milk) ~ Have(Banana)
A At{Home))
actions:

OMACTION:Gofthere), PRECOND: At(here), EFFECT: At(there) » ~At(here))
Op(ACTION: Buy(x). PRECOND: At{store) ~ Sells(store x), EFFECT :Have(x))

There are many possible ways in which the initial plan claboraed

o
o

one choice : three Buy actions for three preconditions of Finish action
second choice:sells precondition of Buy

* Bold arrows:causal links, protection of precondition

» Light arrowszordering constraints

Start

AlfHome) Selis(SM,Banana) | Sells{SM.Milk) Sells(HWS,Drill)

Have(Drill) Have(Milk)

"Hamrﬂanann; Al{Home)

Finish

Figure 1.6 The initial plan for the shopping problem.

The following diagram shows the,

u]
o

partial plan that achieves three of four preconditions of finish
Refining the partiol plan by adding casual links to achieve the sells preconditions of
the huy steps

Fggplo

Start

At Selle(s, Dy Abizh Sellsis JLIK)

Buv(Drill) Buvi{Milk) Buv(bananas)

Start
ANHWSLS e r.ﬂcﬂlﬂl_#hm Al o1 Sh]_Banamasy

Buy(Drill) Buyv(Milk) Buyibananas)

& causal links : protected links

n cousal link is protected by ensuring that threats are ordered to come before or after the
profected link

o demotion : placed before
promotion : placed after

fo F 5
R, ™ g

{a) by i)

Figure 11.10 Prolecting causal links, In(a), the step 5y threstens o conmdition ¢ that is established
by 5 and protected by the causal Hak frodn 5 10 52, Ia (b), 5 has been demoted to come befom
S, anad inv (2) it has been promoted to come afier 5;.

Fggpll

ANHWS) Selle]

GolHWS)

The following diagram shows the partinl plan that achieves At Precondition of the three buy
conditions

OHILE |

GolSh)

ANSEMG Sellni
vy

sl Seellsi ML B ananng)

Buyv{Drilly Buy(Milk) Buvibananas)

Hawve(Daull). 5) Ab Houwe)

Finish

The following dingram shows the solution of this problem,

Start
Al H: S
Go(HWS) \
ANHWE) Sl WS, Deall)

Buy(Drill)y

Fggplz

* The following are the Knowledge enginecring for plan,
« Methodology for solving problems with the planning approach
{11 Decide what to talk about
(2) Decide on a vocabulary of conditions, operators, and — ohjects
(3) Encode operators for the domain
(4) Encode o deseription of the specific problem instance
(5) pose problems 1o the planner and get back plins
® [ex) The blocks world
o {1y what to talk about
= cubic blocks sitting on a table
= one block on top of another
® A robot arm pick up o block and moves it o another position
o (2) "."oc:nhulnr‘_qr
objects:blocks and able
= DOn(b.x):bisonx
= Movelbooy) cmove b form x oy
= —exist x On{x.b) or ¥x ~On{x.b) : precondition
. Lll.:ul'I.'u'.}
o (3
Op(ACT [E}N Movelb.x,y],
PRECOND:On{b,x) A Clear{b) A Clear(y),
EFFECT:Onib.y) » Clean(x) » =Onib.x) » ~Clear{y))
Op(ACTION:MoveTaTable(b,x),
PRECOND:On(b.x) » Clear(h),
EFFECT:Onib, Table) A Clean{x) A —Onib,x1)

3.3 Planning Graph:-
* Planning graphs are an efficient way (o create a representation of o planning problem that can
be used 1o

& Achieve better heuristic estimates
o Directly construct plans

o Planning graphs only work for propositional problems.

o Planning graphs consists of a seq of levels that correspond o time steps in the plan.
o Level 0 is the initial stae.

o Each level consists of a set of literals and a set of actions that represent what might be
possible at that step in the plain

o Might be is the key to efficiency
o Records only a restricted subset of possible negative inleractions among actions,
s Each level consists of
o Literals = all those that could be true ot that time step. depending upon the actions
executed ot preceding time steps.
o Actions = all those actions that cofd have their preconditions satisfied s that time
step, depending on which of the literals actunlly hold.
» For Example:-

It Have{ Cake))
Gioal{Have{Cake) ~ EateniCake))

FE!:IB

Action{Eat{Cake),
PRECOND: Have{Cake)
EFFECT: “Have{Cake) ~ Eaten{Cake))

Action| Bake(Cake).

PRECOND: — Have{Cake)
EFFECT: HaveiCake))

* Siteps to create planming graph for the example,

o Create level 0 from imitial problem state,

Sy Ao

Have(Cake)

—Eaten(Cake)

o

o Mdd all applicable actions,
o MAdd all effects to the next state.

So Ao
Have(Cake)
Eat(Cake)
—Eaten(Cake)

o Add perststence actions (inaction = ne-ops) to map all literals in state 5, (o state 5.,

S5

—1Have(Cake)

Eaten({Cake)

Fggp14'

S{] AD 81

Have(Cake) = Have(Cake)
—1Have(Cake)
Eat(Cake)
Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)

o ldentify mectual exelusions between actions and literals based on potential conflicts,

SD Aﬂ' 81

Have(Calke) = Have(Cake) -
—Have(Cake)'
Eat(Cake)
Eaten(Cake)
— Eaten(Cake) = —Eaten(Cake)

s Mutual Exclusion:-
o A mutex relation holds between two actions when:
® fncomsistent cffects: one action negates the effect of another.
= Jmterference: one of the effects of one action is the negation of a precondition
of the other.
s Competing needs: one of the preconditions of onc action is mutually exclusive
with the precondition of the other.
o A mutex relation holds between two literals when:
= one is the negation of the other OR
s gach possible action pair that could achieve the literals is mutex (inconsistent
suppart).
s Level 5 contains all literals that could result from picking any subset of actions in Aq
o Conflicts between literals that can not occur together
{25 a consequence of the selection action) are
represented by mutex links,
o 51 defines multiple states and the mutex links are the constraints that define this sct of
states.

L
—

P

Sn AD 81

Have(Cake) = 5 _+ Have(Cake) «
/' —Have(Cake)
Eat(Cake)
'; Eaten(Cake)
— Eaten(Cake) =5 — Eaten(Cake)

* [Repeat process until graph levels oft;
o iwo consecutive levels are identical, or
o contoin the same amount of literals
(explanation follows later)

Sy Ag S, A, Sz
Bake{Cake)
Have(Caks) = Have(Cahs) X =R Have{Cake)
— Have Cake) £ — Have Caba)
T NEsa
Eatan(Cake) = EateriCahal
— EateniCake) = —Eaten(Caks) = —Eaten(Caks)
* |n figure

o rectangle denotes actions

small square denotes persistence actions
straight lines denotes preconditions and effects
curved lines denotes mutex links

[== s

3.3.1 Planning Graphs for Heuristic Estimation:-

o PGS provide information about the problem
o PGis a relaxed problem.

o H.]Iilml that docs not appear in the final level of the graph cannot be achieved by any
plan.

* Hin)=m
o Level Cost: First level in which a goal appears
* Very low estimite, since several aclions can oceur

Fggplﬁ

* Improvement: restrict to one action per level using serial PG (add mutex links
between every pair of actions, except persistence actions).

« Cost of a conjunction of goals

o Muox-level: maximum first level of any of the poals

o Sum-level: sum of first levels of all the goals

o Set-level: First level in which all goals appear without being mutex
* The following is the GraphPlan Algorithm,
o Extract o solution directly from the PG

function GRAPHPLAN{probfem) return sofution or filure
graph «— INITIAL-PLANNING-GRAPH{proffem)
goialy 4= GOALS[problem]
loop do
il geeads all non-mutex in last level of graph then do
solntion + EXTRACT-SOLUTION(graph, geals, LENGTH{graphi)
il sofution # fwilure then return sofuion
else if NO-S0OLUTION-POSSIBLE{grapf) then return [ilure
griph +— EXPAND-GRAPH(graph, problem)
Initially the plan consist of 5 literals from the initial state and the CWA literals (500,
Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
Alzo add persistence actions and mvitex relations,
Add the efTects at level 51
Repeat until goal is in level 5i
EXPAND-GRAPH also looks for mutex relations
o Inconsisient effects
* E.p Remove(Spare, Trunk) and LeaveOverNight due to A Spare,Ground)
and mot At{Spare, Ground)
o Interference
* E.pg RemoveiFlat, Axle) and LeaveOverMight AnFlot, Axle) as PRECOND
and not Al(Flat,Axle) as EFFECT
o Competing needs
* E.p PutOn{Spare.Axle) and Remove(Flat, Axle) due to At(Flat. Axle) and not
A(Flat, Axle)
o Imconsistent suppor
= E.p in52, At(SpareAxled and AFlatAxle)

" 5 & ® & @

s In 52, the goal literals exist and are not mutex with any other
o Solution might exist and EXTRACT-SOLUTION will try 1o find it

¢ EXTRACT-SOLUTION can use Boolean CSP 1o solve the problem or a search process:
o Imitial state = last level of PG and goal goals of planning problem
o Actions = select any set of non-conflicting actions thot cover the goals in the state
o Goal = reach level S0 such that all goals are satisfied
o Cost = | for cach action.

le?

5,

A S Trori)

1Ay Rt G

—AljSpas, Grourd)
332 Termination of GraphPlan:-

* Termination? YES
o PG oare monotonically mereasing or decreasing:

o Literals increase monotonically: - Once a literal appears at a given level, it will appear
all subsequent levels, This is because of the persistence actions; Once o literal shows
up. persistence 4ctions cause it to sav forever.

o Actions increase monotonically:- Once a literal appears ot a given level, it will appear al
all subsequent levels, This is a consequence of literals increasing; of the preconditions
of an action appear at one level, they will appear at subsequent levels, and thus will the
action

o Mutexes decrease monstonically:- I two actions are mutex ata given level A, then they
will also be mutex for all previous levels at which they both appear.

* Recause of these properties and because there is a finite number of actions and literals, every PG
will eventually level off

3.4 Planning and Acting in the Real World:

* [n which we sce how more expressive representation and more interactive agent architectures
lead 10 planners that are usefil in the real world,
Planners that are used inthe real world for tasks such as scheduling,
o Hubble Space Telescope Observations
o Operating factories
o handling the logistics for military campaigns

341 Time, Schedules and Resources:

¢ Time is the essence in the general family of applications called Job Shop Scheduling.

* Such a tasks require completing a set of jobs, each of which consists of a sequence of actions,
where each action has a given duration and mighi require some resources.

s The problem is to determine a schedule that minimizes the total time required o complete all
the jobs, while respecting the resource constraints.

’_-_huLhmnmlc:-_Itn.lhﬂumumhlmumh.ahnn_ﬁ:hﬂduﬁm

Imit {chassis(C 1) A chassis(C2)

Fgg:lB

A Engine (ELC1.30) » Engine (E2,C2,60)
A Wheels (W1,C1,30) A Wheels (W2,C2.15))
Goal (Done(C1) » Done(C2))

Action (AddEngine{e,c,m),
PRECOND: Enginele,c,d) ~ chassis(c) » — Engineln{c),
EFFECT: Enginein({c) » Duration (d))
Action (AddWheels{w,c),
PRECOND: Wheels{w.c.d) » chassis(c),
EFFECT: WheelsOn{c) ~ Duration {d})
Action (Inspect(c),
PRECOND: Enginelnie) » WheelsOn (c) ~ chassis (¢,

EFFECT: Done (¢} ~ Duration{107)

The above tnble shows the Job Shop scheduling problem for assembling two cars,

The notation Duration (d) means that an action takes d minutes (o execute,

Engine(E1,C1,30) means that E1 is an Engine that fiis into chassis C1 and takes 30 minutes
1oy Install

The problem can be solved by POP (Partial order planning).,

We must now determine when each action should begin and end.

The following diagram shows the solution for the above problem

To find the start and end times of cach action apply the Critical Path Method CPM,

The critical poth is the one that is the longest and upon which the other pans of the process
cannot be shorter than,

- 5 &

* Al the top, the solution 15 given as a partial order plan,

Fggglg

* The duration of each action 15 given at the bottom of each rectangle, with the carliest and

latest start time listed as [ES, L8] in the upper lefi.

The difference between these two numbers is the slack of an action

Action with zero slack are on the critical path, shown with bold arrows.

At the bottom of the figure the same solution is shown as timeline.

Grey rectangles represent time intervals during which an action may be executed, provided

that the ordering constrainis are respected.

The unoccupied portion of a grey rectangle indicates the slack.

* The following formuls serve as a definition for ES and LS and also as the outline of a
dynamic programming algorithm to compute them:

EStStart) =0
ES(#)y=max . £S5(A)+ Duration] A)
LE{Finish) = ES{ Finish)
LS(A)y=min, L5(B)— Duration] A)
o The complexity of the critical path algorithm 15 just C{Nb).
& where N is the number of actions and b is the branching factor.

Scheduling with resource constraints:

¢ [Real scheduling problems are complicated by the presence of constrainis on resources.
» Consider the above example with some resources,

FESOUTCES.
Imit {chassis(C 1) A chassis{(C2)
~ Engine (E1,C1,30) ~ Engine (E2.C2,60)
A Wheels (W1,01,300 & Wheels (W2,02,15)
» EngincHoists (1) A WheelStations (1) ~ Inspectors (2))
Goal (Done(C1) » Done(C2))

Action (AddEngine{e,c.m),
PRECOND: Engine(e.c.d) ~ chassisic) A — Engineln{c),
EFFECT: Engineln{ch » Duration (d)
RESOURCE: EngineHoists (1))
Action (AddWheels{w,c),
PRECOND: Wheels(w.c,d) » chassis(c),
EFFECT: WheelsOn{c) ~ Duration (d),
RESOURCE: WheelSutuons (1))
Action (Inspect(c),
PRECOND: Engineln{c) » WheclsOn {c) » chassis (),
EFFECT: Done (¢) » Duration(10,

— RESOURCE: Tnspectors (17)

s The available resources are on engine assembly station, one wheel assembly station, and two
Inspectons,

* The notation RESOURCE: means that the resource ris used during execution of an action,
but becomes free apain when the action is complete.

* The following dingram shows the solution to the job shop scheduling with resources.

sz U

——y = - T

T \
| & % x] & ® &8 | # [w m m
The left hand margin lists the three resources o '
Actions are shown aligned horizontally with the resources they consume.
There ane two possible schedules, depending on which assembly uses the engine station first,
COne simple but popular heuristic is the minimum shack algerithm.
it schedules actions ina greedy fashion,
On cach iteration, it considers the unscheduled actions that have had all their predecessors
scheduled and schedules the one with the least slack for the carliest possible start,
It then updates the ES and LS times for each affected action and repeats,
The heuristics is based on the snme principle 85 the most-constrained variahle heuristic in
constraint satisfaction.

- =5 8 8 & @

3.4.2 Hierarchical Task Network Planning:

Cne of the most pervasive ideas for dealing wiath complexit y 15 Hierarchical Decomposition.

¢ The key benefit of hierarchical structure structure is that, at each level of the hierarchy is
reduced tooa small number of activitics at the next lower level

So that the computational cost of finding the correct way to armange those activitics for the
currenl problem is small.

» A planning method based on Hierarchical Task Networks or HTNs.

This approach we take combines ideas from both partial-order planning and the area known
as “HTHN planning”.

o o HTN planning, the imtial plan, which deseribes the problem, 15 viewed as very high-level
description of what iz to be done, For Example: - Building & House.

* Plans are refined by applying a action decompositions,

« Each action decompositions reduces a high-level action 1o a partially ordered set of lower-

level actions

3421 Representing action decompositions:

¢ The following dingram shows the decomposition of a Building a house action.

Fgggz 1

Land Build House House

decomposes (o
Lamd | Gt
i " pemit_|] s Pay Hovee Finish
Construction)
Builder — Money
Hire
Maoney Bulldar

o Inpure HTN planming, plans are generated only by sucecssive action decompositions.

* Therefore the HTN views planning as a process of making an activity description more conerete,
rather than a process of constructing an activity description, starting from the emply activity.

* The action decompositions are represented as, action decompositions methods are stored ina
plun library
From which they are extracted and instantinted to fit the needs of the plan being constructed.
Each method is an expression of the form Decompose (a, d).

|t means that an acton o can be decomposed nto the plan d, which 15 represented as a partial
ordered plan.

* The following table shows the sotion descriptions for the house-building problem and o
detailed decomposition for the BuildHouse action,

= The start action of the decomposition supplics all those preconditions of actions in the plan
that are not supplied by other actions, such a things called external preconditions.
In our example external preconditions are lund and money.

= Similarly, the external effects, which are the preconditions of Finish, are all those effects of
actions in the plan that are not negated by other actions.

Action {(BuyLand, PRECOND: Moncy, EFFECT: Lond ~ = Money)
Action (Getloan, PRECOND: GoodCredit, EFFECT:Money » Morigage)
Action (BuildHouse, PRECOND: Land, EFFECT: House)

Action (GetPermit, PRECOND: Land, EFFECT: Permit)

Action (HireBuilder, EFFECT: Contract)

Action (Construction, PRECOND: Permit A Contract, EFFECT: HouseBuilt » = Permit)

Action (PayBuilder, PRECOND:; Money » HouscBuilt, EFFECT; — Money ~ House ~ — Contract)

Decompose (BuildHouse,
Flan (Steps @ (51 GetPermit, 52: HireBuilder, 53: Construction, 54: PayBuilder
ORDERINGS: (Start+ S0+ 53 + 54 Finish, Stari- 82+ 53},
Links: {Start Laed S1, Stort Money 59, Spemi 53, 52 Coipg 83, 853 Hegsefigini S4,
54 loge Finish, 54 = steey Finish) 1)

* Decomposition should be a correct implementation of the action.

sz 2

A plan library could contain several decompositions for any given high-level action.
Decomposition should be a correct plan, but it could have additional preconditions and
effects bevond those stated in the high-level action description.

The precondition of the high-level action should be the intersection of the external
preconditions of its decompaosition.

In which two other forms of information hiding should be noted as,

First the high-level desoription completely ignores all intermal effects of the decompositions
Second the high-level description does not specify the intervals “inside™ the activity during
which the high-level preconditions are effects must hold.

Information hiding of this kind is essentinl if hierarchical planning is 1o reduce complexity.

34.2.2 Muodifying the planner for decomposition;

Start Construction

-

In this we will see how to modify the Partial Order Planning to incorporate HTN planning.

We con do that by modifving the POP successor function to allow decomposition methods to be
applied to the current partial plan P.

The new successor plans are formed by first selecting some non-primitive action a* in P and then,
for any Decompose (1, d) method from the plan library such that o and 2" unify with substilation
B, replacing a® with d' = SUBST (0, d)

The following disgram shows the decomposition of a high-level action within an existing plan.
Where The BuildHouwse action is replaced by the decompesition from the above example.

The external precondition land is supplied by the existing causal link from BuyLand.

The external precondition Money remnins open afier the decomposition step, so we add a
new action, Getloan.

To be more precise follow the below steps,

o First the action a” is removed from P.Then for gach step § in the decomposition
o Second step is to heok up the ordering constraints for a” in the orginal plan to the

steps in d'.
o Third and final step is to hook up casual links.

Maoney Land House

Start Buy Land Build House Finish

Land
Moncy Buy Land Get Permit House

Pay

Buildar Finish

Get Lo Hide Build
GoodCredit - i Muney

This completes the additions required for generating decompositions in the context of the
FOP Planner.

F'ggl_.'z 3

3.4.3 Planning and Acting in Non-deterministic domains:

* 50 far we have considered only classical planning domains that are fully observable, static
and deterministic,
s Furthiermore we have assumed that the action descriptions are correct and complete.
o Agents have to deal with bath imcomplete and mcorreet information,
* [ncompleteness arises because the world s partiolly observable, non-deterministic or both.
* Incorrectness arises because the world does not necessarily match my model of the world,
= The possibility of having complete or correet knowledge depends on how much
indeterminacy there in the world.
+ Bounded indeterminaey actions can have unprediciable effects, but the possible effects can
be listed in the action description axioms,
* Unbounded indeterminacy the set of possible preconditions or effects either is unknown or
15 too Jarge to be enumerated completely.
* Unbounded indeterminacy is closely related to the qualification problem.
¢ There ane four planning methods for handling indeterminacy.
* The following planning methods are suitable for bounded indeterminacy,
o Sensorleses Planning:-
s Also called as Confront Planning
* This method constructs standard, sequential plans that are to be executed
withoul pereeption.
* This algorithm must ensure that the plon achieves the goal in all possible
circumstances, regardless of the true initial state and the actual action outcomes,
= [t relies on coercion — the wea that the world can be forced into a given siale even
when the agent has only partial information abow the current state,
= Coercion is not always possible,

o Conditional Planning:-
= Also called as Contingeney plunning
* This method constructing a conditional plan with different branches for the
different contingencies that could anse,
* The agent plans first and then executes the plan was produced.
* The agents find out which part of the plan to execute by mcluding sensing
actions in the plan to test for the appropriate conditions.
* The following planning methods are suitable for Unbounded indeterminacy,
o Execution Monitering and Replanning:-
& |n this, the agent con wse any of the preceding planning techmgues o construct
a plan.
* i also uses Execution Monitoring (o judge whether the plan has @ provision
for the actual current situation or need to be revised.
* Replanning occurs when something goes wrong.
® In this the agent can handle unbounded indeterminocy.
o Contlmuous Planning:-
* |t is designed 1o persist over a lifetime,
= It can handle unexpected circumstances in the environment, even if these
oceur while the agent 15 in the middle of constructing a plan.

F'ggpz 4‘

It can also handle the abandonment of goals and the creation of additional
goals by goal formulation.

3.4.4 Conditional Planning:-

o« Conditional planning is a way o deal with uncertainty by checking what is actually
happening in the environment @t predetermined points i the plin,

» Conditional planning is simplest 1o explain for fully observable environments

* The partinlly observahle case is more difficult to exploin in this conditional planning,

3440 Conditional planning in fully observable environments:

* Full observability means that the agent always knows the current state,
P in fully observable environments (FOE)

initial state ; the robot in the right square of a clean world;

the environment is fully observable: A8 ACeanf ACTeani,
The goal state ; the robot in the left square of a clean world,

o
o
o

o

o]

Vocuum world with actions Lefi, Right, and Suck

Disjunctive cffects: Action (Left, PRECOND : AR, EFFECT ; AtL A — AtR)
Modified Disjunctive effects : Action (Left, PRECOND : AR, EFFECT : AiL
v ALR)

Conditional effects: Action{Suck, Precond: , Effect: (when AfL; CleanL) *
{when AR CleanR)

Action (Left, Precond: AtR, Effect: AtL v (AL * when CleanL: 'ClearnL.)

Conditional steps for ereating conditional plans:
if test then planA else planB
e, if AL CleanL then Right else Suck
The search tree for the vacuum world is shown in the following figure

iy

&

o [F] &Hla] (14

o

irst o els of the s tree for ble vaccum w

State nodes are OR nodes where some action must be chosen.

o Chance nodes, shown as cireles, are AND nodes where every outcome must be
hondled, as indicated by the are linking the outgoing branches.
o The solution is shown os bald lines in the tree.
o The following table shows the recursive depth first algorithm for AND-OR_graph search.
function AND-OR-GRAPH-SEARCH(problem) returns o condifional plan, or faflure
OR-SEARCH{INITIAL-STATE[problem], problem, [])

function OR-SEARCH(stale, prablem, path) returns a conditional plan, or fatlure
if GOAL-TEST| problem | siaie) then return the empty plan
if srare 1s on path then return failure
for each acrion, stare-ser in SUCCESSORS[problem |(state) do
plan+= AND-SEARCH(state_set, problem, [s1are| path])
if plan 5= failvre then return focrion| plan]
return foilure

function AND-SEARCH(stale_set, prablem, path) veturns a conditional plan, or failure
for ench =; in srate-set do
plan, ~—OR-SEARCH(s;, problem. path)
if plan =failure then return failure
return [if's; then plan, elseif s then plon, else . if 5, then plon - else plan,]

* The following figure shows the pant of the scarch graph,
s clearly there are no longer any acvelic solutions, and AND-OR-GRAPH-SEARCH would return
with failure, there is however a, evelic solution, which is keep trying Left until it works.

wie huve shown

s All solutions for this problem are cyclic plans.

Fgggz 6

The cyelic solution is as follows,

(L1 : Left, if AiR then L, else if Cleanl then [] else Suck/

Conditional Planning in partially abservable environments

Im the initial state of a partinlly observable planning problem, the agent knows only o certain

amount about the actual state,

The simplest way to moedel this situation is to say that the initial state belongs 1o o state!set

The state set is a way of describing the agents initial beliel state.
Determing “hoth squares are clean™ with local din sensing
o the vacuum agent is AR and knows about R, how abeout L?
The following graph shows part of the AND-OR graph for the alternate double Murphy
vaecum warld,
In which Dirt can sometimes be left behind when the agent leaves a clean square

The agent cannot sense dirt in other squares,

Sets of full state descriptions
o (AR A CleanR A Cleant), (AR & Cleian® A ~Cleant.) |

Logical sentences that capture exactly the set of possible warlds in the belief state,
o AR N CleanR

Knowledge propositions describing the agent's knowledge

K(AtR) A K(CleanR)

closed-world assumption - if a knowledge proposition does not appear in the list, it is
pssumed false.

Now we need o decide how sensing works.

Fgggz 7

There are iwo choices here,
o Aotomatic sensing:- Which means that at every time step the agent gets all the
variahle percepts
o Active sensing:- Which means the percepts are obtained only by executing specific
sensory actions such as
= CheckDirt
s CheckLocation

Action{left, PRECOND: Ark,

EFFECT: KiAtL) M=K {AtR) Nowhen CleanR: —K(CleanR) A
when Cleanl: K ¢ Cleanl) /\
when — Cleand.: Ki— Cleanl.)) .

Action{CheckDirs, EFFECT:

whien AENCTeanl: KiCleand) A
when AL A - Cleand: K (—~Cleanl) A
witen AR N CleanR: K(CleanR) 1\
whien AR N —~CleanR: Ki-Cleanf))

3442 Exceution Monitoring and Replanning:

Ad execulion monitoring agent checks its percepts 1o sec whether evervthing is going to
according plan.
Murphy's law tells us that even the best-lnid plans of mice, men and conditional planning
agents frequently fail.
The problem is unbounded indeterminaey — some unanticipated circumstances will alwoys
arise for which the agents action description are incormect,
Therefore, execution monitoring is a necessity in realistic environments,
we will consider two kinds of execution monitoring,

o Simple, but weak form called action monitoring - whereby the sgent checks the

environment to verify that the pext action will work.
o more complex, bul more effective form called plan monitoring = m which the agent
verifies the entire remaining plan,

A replanning agent knows what to do when something unexpected happens, call a planner
again to come up with a new plan to reach the goal.
To avoid spending too much time planning, this s usually done by trying to repair the old
plan = to find a way from the current unexpected state back onto the plan
Together Execution Monitoring and replanning form a general strategy that can be applied
to bath fully and partially observable environments
It can be applied to a varicty of planning representotions s state-space, partinl-order and
conditional plans.
The following table shows a simple approach 1o state-space planning,
The planning agent starts with a goal and ereates an mitiol plan to achieve it
The agent then stors excouting actions one by one.
The replanning agent keeps track of both the remaining unexpected plan segment plan and
the complete original plan whole-plan
It uses action monitoring: before carrying out the next action of plan, the agent examines its
percepts to see whether any preconditions of the plan have unexpectedly become unsatisfied.

F'ggl_.'z 8

o [T they have, the agent will try 1o get back on track by replanmng a sequence of actions that
should take it back to some point in the whole-plan,

& The following table has an agent that does action monitoring and replanning

* [t uses a complete state-space planning algorithm called PLANNER as a subroutine.

s If the preconditions of the next action are not met, the agent loops through the possible point
p in whaole-plan, trying to find one that PLANNER can plan a path to.

This path is called repair,

» |f PLANNER succeeds in finding a repair, the agent appends repair and the tail of the plan
after p, to create the new plan.

Function REPLANNING-AGENT(percept) returns an action
Statie: KB, a Knowledge base (incliudes action deseriptions)
Plan, a plan, initially []
Whale-plan, & plan, initially []
Gioal, a goal

TELLIKB.MAKE-PERCEPT-SENTENCE(percept,i))
Current « STATE-DESCRIPTION(KB, i)
If plan = [] the
whole-plan +— plan + PLANMNER(current.goal,KH)
INPRECONDITIONS(FIRST(plan)) not currently true in KB then
Candidates 4 SORT{whole-plan, ordered by distance to current)
Find state 5 in candidates such that
Failure repair + PLANNER(current,s.KB)
Continuation +— the iail of whole-plan starting ai s

Whole-plan_«= plan_ ¢ APPENINrepair, continuation}

Return POP(plan)

The following dingram shows the schematic illustration of the process.

The illustration of process is also called as Plan Monitoring.

* The replanner notices that the preconditions of the first action in plan are not satisficd by the
current staie.

+ i then calls the planner to come up with a new subplan called repair that will get from the
current situation to some state s on whole-plan,

sz 9

whaole-plan

plan

al .

Tepair

B]

]
s Before exceution, the planner Ql'_ﬂ;l#l with a plan, here colled whole-plan, 10 get from § to
G

* The agen executes the plan until the point Marked E.

s Before executing the remaining plan, it checks preconditions as usual and finds that it is
actually in state O rather than state E.

* [t then calls s planning algorithm to come up with repair, which is a plan to get from O 1o
some point P oon the original whole-plan.
* The new plan now becomes the concatenation of repair and contimation,
* For example:-
o Problem of achieving a chair and tble of matching color

Init(Color(Chair, Blue) A Color(Table, Green)

A ContainsColor{ BC, Blue) A PaintCan(BC))

A ContainsColor(RC, Red) A PaintCan(RC)
Goal (Color(Chair, x) A Color(Table,x))
ActionfPaint{object,color),

PRECOND: HavePaint(color)

ErrecT: Color(object, color))
Action(Open(can),

PRECOND: PaintCan(can) 4 ContainsColor(can,color)
* The ggents I’LANEI:R sl'TjJId. co piwu the following plen as,
EF}-ECT: ave ﬂmir cotor

[Start Open(BC'), Paint(Table, Blue),Finish]

Fm:3 U

If: the agent constructs a plan to solve the painting problem by painting the chair and table
red, only enough paint for the chair
Plan monitoring
o Detect failure by checking the preconditions for success of the entive remaining plan
o Useful when a goal is serendipitously achieved
= While you're painting the chair, someone comes painting the tnble with the
same color
o Cut off execution of & doomed plan and don’t continue until the failure actually
ocours
* While wou're painting the chair, someone comes painting the toble with a
different color
If ome insists on checking every precondition, it might never get around to actually doing
anything
RP - monitors during execution

3.4.4.3 Continuous Planning

Continuous planning agent

o execule some steps ready to be executed
refine the plan to resolve standard deficiencics
refing the plan with additional information
fix the plan according (o unexpected changes

* pecover Tom exccution ermors

s remove steps that have been made redundant
Goal -=Partial Plan-=Some actions-> Monitoring the world -> New Goal
The continuous planning agent monitors the world continuously, updating its world model
from new percepts even if its deliberations are stll continuing,
For example:-

o use the blocks world domain problem

o The action we will need is Move(x, v). which moves hlock x onto block v, provided
that both are clear.
o The following is the action schema,
Action (Movefx, v,
PRECOND: Clearfx) a Clear(y) ~ Cfx 20,
EFFECT: nix, v aClear(z) & = Clearfyt a — Qnfx, z))
o Goal: CnfC, Y & Owid B}
Srars is used as the label for the current state
o 'II‘_Iht: fn1l01ving seven diagram shows the continuous planning agent approach towards
the goa
o Plan and execution
o Sieps i excoution;
Ordering - Moved,8), then Move(C, 0
Another agent did Move({L8) - change the plan
Remaove the redundant step
Make a mistake, s0 OnfC.A)
51l one open condition
Planning one more time - MovefC, D)
* Final state: start <> finish

o 0o

=]

Fm:3 1

D AeD B as shouwn in (88
The start state is (a).

Al (b}, another agent has interfered, putting D on B.

Al (e), the agent has executed Move(C, D) but has failed, dropping C on A instead.
It retries Move{C, D), reaching the goal state (d).

C ¢ unsupported links supplying Clear{B) and On(D), G)
are dropped, producing this plan.

i | Move(C,D)
T \
OniC.0y
Start | OwD ~=-r08 | Finish
¢ Theli v Move(D, B) has been replaced by one from Start, and the new-
redun Bep Move(D, B) has been dropped.

o Afer Move(C, I3 s executed and removed from the plan, the effects of the Sian step reflect

the fact that C ended up on A instead of the intended 0.
* The goal precondition On{C, 13} is still open,

Oy
Start |00

Al
Dmrq/«m C.0) \
OnELE
OryGLA) o

CiwaT)
L= i
® The ofi Tondition is resolved by adding Move(C, D) back in.

Celiche'd)
(aBE

e —
OwDB;

Start

Co
Coid
Cont)

Finish

Finish

* From this example, we can see that continuous planning is quite similar o POP.

On each iteration, the algorithm finds something about the plan that needs fixing a so-called
plan-Maw and fixes it

¢ The POP algorithm can be seen as a Mow-removal algorithm where the two faws are open

After Move(C, D) is executed and dropped from the plan, the remaining open condition
On(C, [is resolved by adding o causal link from the new start step.
Now the plan is completed.

preconditions and cavsal conflics.

Cn the other hand, the continuous planning agent addresses a much broader range of flaws as

follows,
o Missing goals
Open precondition
Causal conflicts
Unsupported links
Redundant actions
Linexecuted notions
o Unnccessary historical goal
The following table shows the continsous-POP-Agent algorithm

o0 o 990

Function CONTINUDUS-POP-AGENT (percept) refurns an action

Static: plan, a plan, initially with just Start, Finish

Action 4= NoOp (the default)
EFFECTS [Start] = UPDATEEFFECTS [Start], percept)
REMOVE-FLAW (plan) // possibly updating action

Return action

It has a eycle of “perceive, remove flaw act”
It keeps a persistent plan in its KB, and on each tum it removes one , flaw from the plan,
It then takes an action and repeats the loap.

Fggp3 3

& [tis a continuous partial-erder planning agent,

* Afier receiving a percept the agent removes flaw from its constanily updaied plan and then
relurns an action.

« Often it will take many steps of Naw-removal planning, during which it returns NoOp, before
it is ready to take a real action.

3.4.4.4 Multiagent Planning

e 5o for we have dealt with single-agent environments
« Multimgent environments can be cooperative or competitive,
* For example:-
o the problem is team planning in double tennis.
* [Plans can be constructed that specify actions for both players on the weam
*« (Our objective is 1o construct plans efficiently.
* To do this we need requires some form of coordination, possibly achieved by
communleation.
* The following table shows the double tennis problem,

Agents(A, s)é-—'lﬂe'-'imﬁ that there are two agents |

Mit{At{A, [Left, Baselina]} At(B, [Right, Net])A
— Approaching(Ball, [Right, Baseline]))A Partner{A,B) A Partner(B, A)
Goall Returned(Ball) A At(agent, [x,Net]))
Action(Hitfagent, Ball),
PRECOND: Approaching(Ball, [x,y]) 4 At(agent, [x,y]) 4
Partner(agent, partmer) A — At{partner, [Xy])

EFFECT: Retirmed (Ball))
Action(Gol agend, [x,5]), i ¥
PRECOND: Af (agent, [a,b]), 1)
ErrecT: Al{agent, [xp]) 4 — At{agent, [a,b])) |
* [n the above table, Two agents are playing together and can be in one of Tour Tocanons as
Tollows,

o [Left, Baseling]
o [Right, Baseline]
o [Left, Met]
o [Right, Net]
* The ball can be returned if exactly one plaver is in the right place.

Cooperation: Joini goals and plans

= Anagent (A, B) declares that there are two agents, A amd B whe are participating in the
plan,

& Each action explicitly mentions the agent as a parameter, because we need to keep track of
which agemt does what.

= A solution to a multisgent planning problem is o joint plan consisting of actions for each
agent

Fgg:34.'

A joint plan is a solution if the goal will be achieved when cach agent performs its assigned
actions.
The following plan is a solution to the tennis problem
o PLANI:
s A fGofd fRight, Baseline]), HiriA, Balllf
s B (NeCpiB) NoCpiBif,
If both agents have the same KB, and if this is the only solution, then everything would be
fine; the agents could each determine the solution and then jointly execute .
Unfortunately for the agents, there is another plan that satisfies the goal just as well as the
first
o PLAN2:
oA fGofd, [Left, Netll, NoOpiA)]
s B [Go (B.fRightbaseline]), H if23, Bail)]
IT A chooses plan 2 and B chooses plan 1, then nobody will return the ball.
Conversely, if A chooses | and B chooses 2, then they will probably collide with each other;
no one refurns the ball and the net may remain uncovered.
So the agents need a mechanism for eoordination to reach the same joint plan

Multibody Planning:

concentrates on the construction of cormeet joint plans, deferring the coordination issuc for the
time being, we call this Multibody planning

Crur approach 1o multibody planning will be based on partial-order planning

we will assume full observability, to keep things simple

There is one additional issue that doesn’t arise in the single-agent case: the environment s no
longer truly statie,

Because other agents could act while any particular agent is deliberating,

Therefore we need synchronization

We will assume that cach action tnkes the same amount of time and that actions at cach point
in the joint plan are simultancous,

AL any point in time, each agent is executing exactly one action.

This set of concurrent actions is called a joint action.

For example, Plan 2 for the tennis problem con be represented as this sequence off joim
actlons:

(Gol(A, [LeftNet])Go(B, [Rightbaseline]))

coordingiacrelpiishy . Hit(B, Ball))

The simplest method by which a group of agens can ensure agrecment on & joint plan is 1o
ndopt @ convention prior (o cngaging in joint activity,
A convention is any constraint on the selection of joint plans, beyond the basic constraint that
the jomnt plan must work 1 all agents adopt i
For example
o the convention "stick to vour side of the court” would couse the doubles partners to
select plan 2

F'm:3 5

o the convention "one player always stays at the net” would lead them o plan |
o i the absence of an applicable convention, agents con use communication 10 achieve
commaon knowledge of a feasible join plan
* [For example;
o a doubles tenmis player could shout "Mine!" or "Yours!" to indicate a preferred joint
plan.

Competition:

+ Mot all nmltiagent environments involve cooperative agents
o Agents with conflicting utility functions are in competition with cach other
o Une example: chess-playing. So an agent must
() recognize that there are other agents
b} compute soine of the other agent's possible plans
(¢) compute how the other agent's plans interact with its own plans
(dy decide on the best action in view of these inleractions

Fggg3 6

