
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE
III YEAR IV SEM

UNIT II – PLANNING OVERVIEW

TOPIC – PLANNING

April 18, 2016 Planning

Reading
• Required reading

– Chapter 10

• Recommended reading
– Chapter 11

2

April 18, 2016 Planning

Outline

• Background

– Situation Calculus

– Frame, qualification, & ramification problems

• Representation language

• Algorithms

3

April 18, 2016 Planning

Background
• Focus

– The focus here is deterministic planning
• Environment is fully observable
• Results of actions is deterministic

– Relaxing the above requires dealing with uncertainty
• Problem types: sensorless, contingency, exploration

• Planning ‘communities’ in AI
– Logic-based: Reasoning About Actions & Change
– Less formal representations: Classical AI Planning
– Uncertainty (UAI): Graphical Models such as

• Markov Decision Processes (MDP), Partially Observable MDPs, etc.

• AI Planning is not MRP (Material Requirements Planning)

4

April 18, 2016 Planning

Actions, events, and change
• Planning requires a representation of time

– to express & reason about sequences of actions

– to express the effects of actions on the world

• Propositional Logic
– does not offer a representation for time

– Each action description needs to be repeated for each step

• Situation Calculus (AIMA Section 10.4.2)
– Is based on FOL

– Each time step is a ‘situation’

– Allows to represent plans and reason about actions & change

5

April 18, 2016 Planning

Situation Calculus: Ontology

• Situations

• Fluents

• Atemporal (or eternal)
predicates & functions

6

AIMA Section 10.4.2

April 18, 2016 Planning

Situation Calculus: Ontology
• Situations

– Initial state: S0

– A function Result(a,s) gives the situation resulting from applying action
a in situation s

• Fluents
– Functions & predicates whose truth values can change from one

situation to the other
– Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions
– Example: Gold(G1), LeftLegOf(Wumpus)

7

April 18, 2016 Planning

Situation Calculus
• Sequence of actions

– Result([],s)=s
– Result([a | seq],s)=Result(seq,Result(a,s))

• Projection task
– Deducing the outcome of a sequence of actions

• Planning task
– Find a sequence of actions that achieves a desired

effect

8

April 18, 2016 Planning

Example: Wumpus World
• Fluents

– At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]
– At(Agent,[1,1],S0)  At(G1,[1,2],S0)

• In S0, we also need to have:
– At(o,x,S0) [(o=Agent)  x=[1,1]]  [(o=G1)  x=[1,2]]
– Holding(o,S0)
– Gold(G1)  Adjacent([1,1],[1,2])  Adjacent([1,2],[1,1])

• The query is:
–  seq At(G1,[1,1],Result(seq,S0))

• The answer is
– At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))

9

April 18, 2016 Planning

Importance of Situation Calculus

• Historical note
– Situation Calculus was the first attempt to formalizing planning in FOL

– Other formalisms include Event Calculus

– The area of using logic for planning is informally called in the literature
“Reasoning About Action & Change”

• Highlighted three important problems
1. Frame problem

2. Qualification problem

3. Ramification problem

10

April 18, 2016 Planning

‘Famous’ Problems
• Frame problem

– Representing all things that stay the same from one situation to the next

– Inferential and representational

• Qualification problem
– Defining the circumstances under which an action is guaranteed to work

– Example: what if the gold is slippery or nailed down, etc.

• Ramification problem
– Proliferation of implicit consequences of actions as actions may have

secondary consequences

– Examples: How about the dust on the gold?

11

April 18, 2016 Planning

Outline

• Background

– Situation Calculus

– Frame, qualification, & ramification problems

• Representation language

• Algorithms

12

April 18, 2016 Planning

Planning Languages

• Languages must represent..
– States

– Goals

– Actions

• Languages must be
– Expressive for ease of representation

– Flexible for manipulation by algorithms

13

April 18, 2016 Planning

State Representation
• A state is represented with a conjunction of positive

literals
• Using

– Logical Propositions: Poor  Unknown
– FOL literals: At(Plane1,OMA)  At(Plan2,JFK)

• FOL literals must be ground & function-free
– Not allowed: At(x,y) or At(Father(Fred),Sydney)

• Closed World Assumption
– What is not stated are assumed false

14

April 18, 2016 Planning

Goal Representation

• Goal is a partially specified state

• A proposition satisfies a goal if it contains all
the atoms of the goal and possibly others..

– Example: Rich  Famous  Miserable satisfies the
goal Rich  Famous

15

April 18, 2016 Planning

Example: Air Cargo
• Initial state; Goal State; Actions: Load, Unload, Fly

16

April 18, 2016 Planning

Action Representation
• Action Schema

– Action name

– Preconditions

– Effects

• Example
Action(Fly(p,from,to),

PRECOND: At(p,from)  Plane(p)  Airport(from)  Airport(to)

EFFECT: At(p,from)  At(p,to))

• Sometimes, Effects are split into ADD list and DELETE list

17

Fly(WHI,LNK,OHA)

At(WHI,LNK),Plane(WHI),

Airport(LNK), Airport(OHA)

At(WHI,OHA),  At(WHI,LNK)

April 18, 2016 Planning

Applying an Action
• Find a substitution list  for the variables

– of all the precondition literals
– with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect list
• Add the result to the current state description to generate the new

state
• Example:

– Current state: At(P1,JFK)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK)  Airport(SFO)
– It satisfies the precondition with ={p/P1,from/JFK, to/SFO)
– Thus the action Fly(P1,JFK,SFO) is applicable
– The new current state is: At(P1,SFO)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK) 

Airport(SFO)

18

April 18, 2016 Planning

Languages for Planning Problems

• STRIPS
– Stanford Research Institute Problem Solver
– Historically important

• ADL
– Action Description Languages
– See Table 11.1 for STRIPS versus ADL

• PDDL
– Planning Domain Definition Language
– Revised & enhanced for the needs of the International Planning

Competition
– Currently version 3.1

19

http://ipc.informatik.uni-freiburg.de/PddlExtension

April 18, 2016 Planning

Example: Air Cargo
• Initial state; Goal State; Actions: Load, Unload, Fly

20

April 18, 2016 Planning

Example: Spare Tire Problem
• The negated precondition At(Flat,Axle) not allowed in STRIPS

• Could be easily replaced with Clear(Axle), adding one more predicate to the language

21

April 18, 2016 Planning

Example: Blocks World
• Initial state; Goal state; Actions: Move(b,x,y), MoveToTable(b,x)

22

April 18, 2016 Planning

Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners

23

April 18, 2016 Planning

State-Space Search (1)
• Search the space of states (first chapters)

– Initial state, goal test, step cost, etc.
– Actions are the transitions between state

• Actions are invertible (why?)
– Move forward from the initial state: Forward State-

Space Search or Progression Planning
– Move backward from goal state: Backward State-

Space Search or Regression Planning

24

April 18, 2016 Planning

State-Space Search (2)

25

April 18, 2016 Planning

State-Space Search (3)
• Remember that the language has no functions symbols

• Thus number of states is finite

• And we can use any complete search algorithm (e.g., A*)
– We need an admissible heuristic

– The solution is a path, a sequence of actions: total-order planning

• Problem: Space and time complexity
– STRIPS-style planning is PSPACE-complete unless actions have

• only positive preconditions and

• only one literal effect

26

April 18, 2016 Planning

SRIPS in State-Space Search

• STRIPS representation makes it easy to focus on ‘relevant’
propositions and
– Work backward from goal (using EFFECTS)

– Work forward from initial state (using PRECONDITIONS)

– Facilitating bidirectional search

27

April 18, 2016 Planning

Relevant Action

• An action is relevant

– In Progression planning when its preconditions match a
subset of the current state

– In Regression planning, when its effects match a subset of
the current goal state

28

April 18, 2016 Planning

Consistent Action

• The purpose of applying an action is to ‘achieves a
desired literal’

• We should be careful that the action does not undo a
desired literal (as a side effect)

• A consistent action is an action that does not undo a
desired literal

29

April 18, 2016 Planning

Backward State-Space Search
• Given

– A goal G description

– An action A that is relevant and consistent

• Generate a predecessor state where
– Positive effects (literals) of A in G are deleted

– Precondition literals of A are added unless they already appear

– Substituting any variables in A’s effects to match literals in G

– Substituting any variables in A’s preconditions to match substitutions in A’s
effects

• Repeat until predecessor description matches initial state

30

April 18, 2016 Planning

Heuristic to Speed up Search

• We can use A*, but we need an admissible heuristic

1. Divide-and-conquer: sub-goal independence assumption

– Problem relaxation by removing

2. … all preconditions

3. … all preconditions and negative effects

4. … negative effects only: Empty-Delete-List

31

April 18, 2016 Planning

1. Subgoal Independence Assumption

• The cost of solving a conjunction of subgoals is the sum of the
costs of solving each subgoal independently

• Optimistic
– Where subplans interact negatively

– Example: one action in a subplan delete goal achieved by an action in
another subplan

• Pessimistic (not admissible)
– Redundant actions in subplans can be replaced by a single action in

merged plan

32

April 18, 2016 Planning

2. Problem Relaxation: Removing Preconditions

• Remove preconditions from action descriptions
– All actions are applicable

– Every literal in the goal is achievable in one step

• Number of steps to achieve the conjunction of literals in
the goal is equal to the number of unsatisfied literals

• Alert
– Some actions may achieve several literals

– Some action may remove the effect of another action

33

April 18, 2016 Planning

3. Remove Preconditions & Negative Effects

• Considers only positive interactions among actions to
achieve multiple subgoals

• The minimum number of actions required is the sum of
the union of the actions’ positive effects that satisfy the
goal

• The problem is reduced to a set cover problem, which is
NP-hard
– Approximation by a greedy algorithm cannot guarantee an

admissible heuristic

34

April 18, 2016 Planning

4. Removing Negative Effects (Only)

• Remove all negative effects of actions (no action may
destroy the effects of another)

• Known as the Empty-Delete-List heuristic

• Requires running a simple planning algorithm

• Quick & effective

• Usable in progression or regression planning

35

April 18, 2016 Planning

Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners

36

April 18, 2016 Planning

Partial Order Planning (POP)
• State-space search

– Yields totally ordered plans (linear plans)

• POP
– Works on subproblems independently, then combines subplans
– Example

• Goal(RightShoeOn  LeftShoeOn)
• Init()
• Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
• Action(RightSock, EFFECT: RightSockOn)
• Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
• Action(LeftSock, EFFECT: LeftSockOn)

37

April 18, 2016 Planning

POP Example & its linearization

38

April 18, 2016 Planning

Components of a Plan
1. A set of actions
2. A set of ordering constraints

– A p B reads “A before B” but not necessarily immediately before B
– Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions
– A B reads “A achieves p for B” and p must remain true from the time A is

applied to the time B is applied
– Example “RightSock RightShoe

4. A set of open preconditions
– Planners work to reduce the set of open preconditions to the empty set w/o

introducing contradictions

39

p

RightSockOn

April 18, 2016 Planning

Consistent Plan (POP)
• Consistent plan is a plan that has

– No cycle in the ordering constraints

– No conflicts with the causal links

• Solution
– Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A B and an action C
(that clobbers, threatens the causal link), we force C to occur
outside the “protection interval” by adding
– the constraint C p A (demoting C) or

– the constraint B p C (promoting C)

40

p

April 18, 2016 Planning

Setting up the PoP
• Add dummy states

– Start
• Has no preconditions
• Its effects are the literals of the initial state

– Finish
• Its preconditions are the literals of the goal state
• Has no effects

• Initial Plan:
– Actions: {Start, Finish}
– Ordering constraints: {Start p Finish}
– Causal links: {}
– Open Preconditions: {LeftShoeOn,RightShoeOn}

41

Start

Finish

Start

Finish
LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …

April 18, 2016 Planning

POP as a Search Problem
• The successor function arbitrarily picks one open precondition p on

an action B
• For every possible consistent action A that achieves p

– It generates a successor plan adding the causal link A B and the
ordering constraint A p B

– If A was not in the plan, it adds Start p A and A p Finish
– It resolves all conflicts between

• the new causal link and all existing actions
• between A and all existing causal links

– Then it adds the successor states for combination of resolved conflicts

• It repeats until no open precondition exists

42

p

April 18, 2016 Planning

Example of POP: Flat tire problem
• See problem description in Fig 10.13 page 391

• Only one open precondition

• Only 1 applicable action

43

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)
At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action

Remove(Spare,Trunk)

April 18, 2016 Planning
44

• Pick up At(Flat,Axle)

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle)

• Choose LeaveOvernight

Add causal link between

Remove(Spare,Trunk) and

PutOn(Spare,Axle)

• LeaveOvernight has effect

At(Spare,Ground), which conflicts

with the causal link

• We remove the conflict by

forcing LeaveOvernight to occur

before Remove(Spare,Trunk)• Conflicts with effects of Remove(Spare,Trunk)

• The only way to resolve the conflict is to undo LeaveOvernightuse the action

Remove(Flat,Axle)

April 18, 2016 Planning
45

• This time, we choose Remove(Flat,Axle)

• Pick up At(Spare,Trunk) and choose Start to achieve it

• Pick up At(Flat,Axle) and choose Start to achieve it.

• We now have a complete consistent partially ordered plan

April 18, 2016 Planning

POP Algorithm (1)
• Backtrack when fails to resolve a threat or find an operator

• Causal links
– Recognize when to abandon a doomed plan without wasting time

expanding irrelevant part of the plan

– allow early pruning of inconsistent combination of actions

• When actions include variables, we need to find appropriate
substitutions
– Typically we try to delay commitments to instantiating a variable until we

have no other choice (least commitment)

• POP is sound, complete, and systematic (no repetition)

46

April 18, 2016 Planning

POP Algorithm (2)
• Decomposes the problem (advantage)
• But does not represent states explicitly: it is hard to design heuristic

to estimate distance from goal
– Example: Number of open preconditions – those that match the effects of

the start node. Not perfect (same problems as before)

• A heuristic can be used to choose which plan to refine (which
precondition to pick-up):
– Choose the most-constrained precondition, the one satisfied by the least

number of actions. Like in CSPs!
– When no action satisfies a precondition, backtrack!
– When only one action satisfies a precondition, pick up the precondiction.

47

April 18, 2016 Planning

Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners

48

April 18, 2016 Planning

Planning Graph
• Is special data structure used for

1. Deriving better heuristic estimates
2. Extract a solution to the planning problem: GRAPHPLAN algorithm

• Is a sequence S0,A0,S1,A1,…,Si of levels
– Alternating state levels & action levels
– Levels correspond to time stamps
– Starting at initial state
– State level is a set of (propositional) literals

• All those literals that could be true at that level

– Action level is a set of (propositionalized) actions
• All those actions whose preconditions appear in the state level (ignoring all negative interactions, etc.)

• Propositionalization may yield combinatorial explosition in the presence of a large number of objects

–

49

April 18, 2016 Planning

Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

50

April 18, 2016 Planning

Example of a Planning Graph (1)
Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

51

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at
the initial state

Action is connected to its
preconds & effects

Persistence Actions (noop)

April 18, 2016 Planning

Example of a Planning Graph (2)
• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at
previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and
between conflicting literals

52

Mutual exclusion links S1 represents multiple states

April 18, 2016 Planning

Mutex Links between Actions
1. Inconsistent effects: one action negates an effect of another

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another
– Eat(Cake) negates precondition of the noop of Have(Cake):

3. Competing needs: A precondition on an action is mutex with the
precondition of another
– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition

53

April 18, 2016 Planning

Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can achieve
the two literals is mutex. Examples:
– In S1, Have(Cake) & Eaten(Cake) are mutex

– In S2, they are not because Bake(Cake) & the noop of Eaten(Cake) are
not mutex

54

April 18, 2016 Planning

Focus

• Building the Planning Graph

• Using it for Heuristic Estimation
– Planning graph as a relaxation of original problem

– Easy to build (compute)

• Using it for generating the plan

55

April 18, 2016 Planning

Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by any
plan
– State-space search: Any state containing an unachievable literal has cost

h(n)=

– POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it appears
– Estimate is admissible for individual literals

– Estimate can be improved by serializing the graph (serial planning graph: one
action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals
– Three heuristics: max level, level sum, set level

56

April 18, 2016 Planning

Estimate of Conjunction of Goal Literals

• Max-level
– The largest level of a literal in the conjunction

– Admissible, not very accurate

• Level sum
– Under subgoal independence assumption, sums the level costs of the literals

– Inadmissible, works well for largely decomposable problems

• Set level
– Finds the level at which all literals appear w/o any pair of them being mutex

– Dominates max-level, works extremely well on problems where there is a great
deal of interaction among subplans

57

April 18, 2016 Planning

Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

– GraphPlan algorithm [Blum & Furst, 95]

58

April 18, 2016 Planning

GRAPHPLAN algorithm
GRAPHPLAN(problem) returns solution or failure
graph  INITIALPLANNINGGRAPH(problem)
goals  GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph))
if solution  failure then return solution
else if NOSOLUTIONPOSSIBLE(graph) then return failure

graph  EXPANDGRAPH (graph,problem)

• Two main stages
1. Extract solution
2. Expand the graph

59

April 18, 2016 Planning

Example of GRAPHPLAN Execution (1)

60

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan

April 18, 2016 Planning

Example of GRAPHPLAN Execution (2)

61

• Three actions

are applicable

• 3 actions and 5

noops are added

• Mutex links are

added

• At(Spare,Axle)

still not in S1

• Plan is expanded

April 18, 2016 Planning

Example of GRAPHPLAN Execution (3)

62

• Illustrates well mutex links: inconsistent effects, interference,
competing needs, inconsistent support

April 18, 2016 Planning

Solution Extraction (Backward)

63

1. Solve a Boolean CSP: Variables are actions, domains are
{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward

April 18, 2016 Planning

Backtrack Search for Solution Extraction

• Starting at the highest fact level
– Each goal is put in a goal list for the current fact layer

– Search iterates thru each fact in the goal list trying to find an action to support
it which is not mutex with any other chosen action

– When an action is chosen, its preconditions are added to the goal list of the
lower level

– When all facts in the goal list of the current level have a consistent assignment
of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an action to
each fact in the goal list at a given level

• Search succeeds when the first level is reached.

64

April 18, 2016 Planning

Termination of GRAPHPLAN
• GRAPHPLAN is guaranteed to terminate

– Literal increase monotonically
– Actions increase monotonically
– Mutexes decrease monotinically

• A solution is guaranteed not to exist when
– The graph levels off with all goals present & non-

mutex, and

– EXTRACTSOLUTION fails to find solution

65

April 18, 2016 Planning

Optimality of GRAPHPLAN

• The plans generated by GRAPHPLAN

– Are optimal in the number of steps needed to
execute the plan

– Not necessarily optimal in the number of actions
in the plan (GRAPHPLAN produces partially
ordered plans)

66

April 18, 2016 Planning

Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners

67

68

69

THANK YOU

