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Reading
• Required reading

– Chapter 10

• Recommended reading
– Chapter 11
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Outline

• Background

– Situation Calculus

– Frame, qualification, & ramification problems

• Representation language

• Algorithms
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Background
• Focus

– The focus here is deterministic planning
• Environment is fully observable
• Results of actions is deterministic

– Relaxing the above requires dealing with uncertainty
• Problem types: sensorless, contingency, exploration

• Planning ‘communities’ in AI
– Logic-based: Reasoning About Actions & Change
– Less formal representations: Classical AI Planning
– Uncertainty  (UAI):  Graphical Models such as 

• Markov Decision Processes (MDP), Partially Observable MDPs, etc.

• AI Planning is not MRP (Material Requirements Planning)
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Actions, events, and change
• Planning requires a representation of time

– to express & reason about sequences of actions

– to express the effects of actions on the world

• Propositional Logic 
– does not offer a representation for time 

– Each action description needs to be repeated for each step

• Situation Calculus (AIMA Section 10.4.2)
– Is based on FOL

– Each time step is a ‘situation’

– Allows to represent plans and reason about actions & change
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Situation Calculus: Ontology

• Situations

• Fluents

• Atemporal (or eternal) 
predicates & functions
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Situation Calculus: Ontology
• Situations

– Initial state: S0

– A function Result(a,s) gives the situation resulting from applying action 
a in situation s

• Fluents
– Functions & predicates whose truth values can change from one 

situation to the other
– Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions
– Example: Gold(G1), LeftLegOf(Wumpus)
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Situation Calculus
• Sequence of actions

– Result([],s)=s
– Result([a | seq],s)=Result(seq,Result(a,s))

• Projection task
– Deducing the outcome of a sequence of actions

• Planning task
– Find a sequence of actions that achieves a desired 

effect
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Example: Wumpus World
• Fluents

– At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]
– At(Agent,[1,1],S0)  At(G1,[1,2],S0)

• In S0, we also need to have:
– At(o,x,S0) [(o=Agent)  x=[1,1]]  [(o=G1)  x=[1,2]]
– Holding(o,S0)
– Gold(G1)  Adjacent([1,1],[1,2])  Adjacent([1,2],[1,1])

• The query is: 
–  seq At(G1,[1,1],Result(seq,S0))

• The answer is
– At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))

9



April 18, 2016 Planning

Importance of Situation Calculus

• Historical note
– Situation Calculus was the first attempt to formalizing planning in FOL

– Other formalisms include Event Calculus

– The area of using logic for planning is informally called in the literature 
“Reasoning About Action & Change”

• Highlighted three important problems
1. Frame problem

2. Qualification problem

3. Ramification problem
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‘Famous’ Problems
• Frame problem

– Representing all things that stay the same from one situation to the next

– Inferential and representational

• Qualification problem
– Defining the circumstances under which an action is guaranteed to work

– Example: what if the gold is slippery or nailed down, etc.

• Ramification problem
– Proliferation of implicit consequences of actions as actions may have 

secondary consequences

– Examples: How about the dust on the gold?
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Outline

• Background

– Situation Calculus

– Frame, qualification, & ramification problems

• Representation language

• Algorithms
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Planning Languages

• Languages must represent..
– States

– Goals 

– Actions

• Languages must be
– Expressive for ease of representation

– Flexible for manipulation by algorithms

13



April 18, 2016 Planning

State Representation
• A state is represented with a conjunction of positive 

literals
• Using 

– Logical Propositions: Poor  Unknown
– FOL literals: At(Plane1,OMA)  At(Plan2,JFK)

• FOL literals must be ground & function-free
– Not allowed: At(x,y) or At(Father(Fred),Sydney)

• Closed World Assumption
– What is not stated are assumed false
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Goal Representation

• Goal is a partially specified state

• A proposition satisfies a goal if it contains all 
the atoms of the goal and possibly others..

– Example: Rich  Famous  Miserable satisfies the 
goal Rich  Famous
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Example: Air Cargo
• Initial state; Goal State; Actions: Load, Unload, Fly
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Action Representation
• Action Schema

– Action name

– Preconditions

– Effects

• Example
Action(Fly(p,from,to),

PRECOND: At(p,from)  Plane(p)  Airport(from)  Airport(to)

EFFECT: At(p,from)  At(p,to))

• Sometimes, Effects are split into ADD list and DELETE list

17

Fly(WHI,LNK,OHA)

At(WHI,LNK),Plane(WHI), 

Airport(LNK), Airport(OHA)

At(WHI,OHA),  At(WHI,LNK)
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Applying an Action
• Find a substitution list  for the variables 

– of all the precondition literals 
– with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect list
• Add the result to the current state description to generate the new 

state
• Example:

– Current  state: At(P1,JFK)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK)  Airport(SFO)
– It satisfies the precondition with ={p/P1,from/JFK, to/SFO)
– Thus the action Fly(P1,JFK,SFO) is applicable
– The new current state is: At(P1,SFO)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK) 

Airport(SFO)
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Languages for Planning Problems

• STRIPS 
– Stanford Research Institute Problem Solver
– Historically important

• ADL
– Action Description Languages
– See Table 11.1 for STRIPS versus ADL

• PDDL
– Planning Domain Definition Language
– Revised & enhanced for the needs of the International Planning 

Competition
– Currently version 3.1
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Example: Air Cargo
• Initial state; Goal State; Actions: Load, Unload, Fly
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Example: Spare Tire Problem
• The negated precondition  At(Flat,Axle) not allowed in STRIPS

• Could be easily replaced with Clear(Axle), adding one more predicate to the language

21



April 18, 2016 Planning

Example: Blocks World
• Initial state; Goal state; Actions: Move(b,x,y), MoveToTable(b,x)
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Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners
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State-Space Search (1)
• Search the space of states (first chapters) 

– Initial state, goal test, step cost, etc.
– Actions are the transitions between state

• Actions are invertible (why?)
– Move forward from the initial state: Forward State-

Space Search or Progression Planning
– Move backward from goal state: Backward State-

Space Search or Regression Planning
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State-Space Search (2)
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State-Space Search (3)
• Remember that the language has no functions symbols

• Thus number of states is finite

• And we can use any complete search algorithm (e.g., A*)
– We need an admissible heuristic

– The solution is a path, a sequence of actions: total-order planning

• Problem: Space and time complexity
– STRIPS-style planning is PSPACE-complete unless actions have 

• only positive preconditions and 

• only one literal effect
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SRIPS in State-Space Search

• STRIPS representation makes it easy to focus on ‘relevant’ 
propositions and 
– Work backward from goal (using EFFECTS)

– Work forward from initial state (using PRECONDITIONS)

– Facilitating bidirectional search
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Relevant Action

• An action is relevant

– In Progression planning when its preconditions match a 
subset of the current state

– In Regression planning, when its effects match a subset of 
the current goal state
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Consistent Action

• The purpose of applying an action is to ‘achieves a 
desired literal’

• We should be careful that the action does not undo a 
desired literal (as a side effect)

• A consistent action is an action that does not undo a 
desired literal
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Backward State-Space Search
• Given 

– A goal G description

– An action A that is relevant and consistent

• Generate a predecessor state where
– Positive effects (literals) of A in G are deleted

– Precondition literals of A are added unless they already appear

– Substituting any variables in A’s effects to match literals in G 

– Substituting any variables in A’s preconditions to match substitutions in A’s 
effects

• Repeat until predecessor description matches initial state
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Heuristic to Speed up Search

• We can use A*, but we need an admissible heuristic

1. Divide-and-conquer: sub-goal independence assumption

– Problem relaxation by removing

2. … all preconditions

3. … all preconditions and negative effects

4. … negative effects only: Empty-Delete-List 
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1. Subgoal Independence Assumption

• The cost of solving a conjunction of subgoals is the sum of the 
costs of solving each subgoal independently

• Optimistic
– Where subplans interact negatively

– Example: one action in a subplan delete goal achieved by an action in 
another subplan 

• Pessimistic (not admissible)
– Redundant actions in subplans can be replaced by a single action in  

merged plan
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2. Problem Relaxation: Removing Preconditions

• Remove preconditions from action descriptions
– All actions are applicable

– Every literal in the goal is achievable in one step 

• Number of steps to achieve the conjunction of literals in 
the goal is equal to the number of unsatisfied literals

• Alert
– Some actions may achieve several literals

– Some action may remove the effect of another action
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3. Remove Preconditions & Negative Effects

• Considers only positive interactions among actions to 
achieve multiple subgoals

• The minimum number of actions required is the sum of 
the union of the actions’ positive effects that satisfy the 
goal

• The problem is reduced to a set cover problem, which is 
NP-hard
– Approximation by a greedy algorithm cannot guarantee an 

admissible heuristic
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4. Removing Negative Effects (Only)

• Remove all negative effects of actions (no action may 
destroy the effects of another)

• Known as the Empty-Delete-List heuristic

• Requires running a simple planning algorithm

• Quick & effective

• Usable in progression or regression planning
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Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners
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Partial Order Planning (POP)
• State-space search

– Yields totally ordered plans (linear plans)

• POP 
– Works on subproblems independently, then combines subplans
– Example

• Goal(RightShoeOn  LeftShoeOn)
• Init()
• Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
• Action(RightSock, EFFECT: RightSockOn)
• Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
• Action(LeftSock, EFFECT: LeftSockOn)
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POP Example & its linearization

38
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Components of a Plan
1. A set of actions
2. A set of ordering constraints 

– A p B reads “A before B” but not necessarily immediately before B
– Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions
– A           B reads “A achieves p for B” and p must  remain true from the time A is 

applied to the time B is applied
– Example “RightSock                      RightShoe

4. A set of open preconditions
– Planners work to reduce the set of open preconditions to the empty set w/o 

introducing contradictions

39

p

RightSockOn



April 18, 2016 Planning

Consistent Plan (POP)
• Consistent plan is a plan that has

– No cycle in the ordering constraints

– No conflicts with the causal links

• Solution
– Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A         B and an action C 
(that clobbers, threatens the causal link), we force C to occur 
outside the “protection interval” by adding
– the constraint  C p A  (demoting C) or 

– the constraint  B p C (promoting C)

40

p



April 18, 2016 Planning

Setting up the PoP
• Add dummy states 

– Start
• Has no preconditions
• Its effects are the literals of the initial state

– Finish
• Its preconditions are the literals of the goal state
• Has no effects

• Initial Plan:
– Actions: {Start, Finish}
– Ordering constraints: {Start p Finish}
– Causal links: {}
– Open Preconditions: {LeftShoeOn,RightShoeOn}

41

Start

Finish

Start

Finish
LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …



April 18, 2016 Planning

POP as a Search Problem
• The successor function arbitrarily picks one open precondition p on 

an action B
• For every possible consistent action A that achieves p

– It generates a successor plan adding the causal link  A          B and the 
ordering constraint  A p B

– If A was not in the plan, it adds  Start p A and  A p Finish
– It resolves all conflicts between 

• the new causal link and all existing actions 
• between A and all existing causal links

– Then it adds the successor states for  combination of resolved conflicts

• It repeats until no open precondition exists

42
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Example of POP: Flat tire problem
• See problem description in Fig 10.13 page 391

• Only one open precondition

• Only 1 applicable action
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Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)
At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action 

Remove(Spare,Trunk)
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• Pick up At(Flat,Axle)

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle)

• Choose LeaveOvernight

Add causal link between 

Remove(Spare,Trunk) and 

PutOn(Spare,Axle)

• LeaveOvernight has effect 

At(Spare,Ground), which conflicts 

with the causal link

• We remove the conflict by 

forcing LeaveOvernight to occur 

before Remove(Spare,Trunk)• Conflicts with effects of Remove(Spare,Trunk)

• The only way to resolve the conflict is to undo LeaveOvernightuse the action 

Remove(Flat,Axle)
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• This time, we choose Remove(Flat,Axle)

• Pick up At(Spare,Trunk) and choose Start to achieve it

• Pick up At(Flat,Axle) and choose Start to achieve it.

• We now have a complete consistent partially ordered plan
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POP Algorithm (1)
• Backtrack when fails to resolve a threat or find an operator

• Causal links 
– Recognize when to abandon a doomed plan without wasting time 

expanding irrelevant part of the plan

– allow early pruning of inconsistent combination of actions

• When actions include variables, we need to find appropriate 
substitutions
– Typically we try to delay commitments to instantiating a variable until we 

have no other choice (least commitment) 

• POP is sound, complete, and systematic (no repetition)
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POP Algorithm (2)
• Decomposes the problem (advantage) 
• But does not represent states explicitly: it is hard to design heuristic 

to estimate distance from goal
– Example: Number of open preconditions – those that match the effects of 

the start node.  Not perfect (same problems as before)

• A heuristic can be used to choose which plan to refine (which 
precondition to pick-up): 
– Choose the most-constrained precondition, the one satisfied by the least 

number of actions.  Like in CSPs! 
– When no action satisfies a precondition, backtrack!
– When only one action satisfies a precondition, pick up the precondiction. 
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Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners
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Planning Graph
• Is special data structure used for 

1. Deriving better heuristic estimates
2. Extract a solution to the planning problem: GRAPHPLAN algorithm

• Is a sequence S0,A0,S1,A1,…,Si of levels
– Alternating state levels & action levels
– Levels correspond to time stamps
– Starting at initial state
– State level is a set of (propositional) literals

• All those literals that could be true at that level

– Action level is a set of (propositionalized) actions
• All those actions whose preconditions appear in the state level (ignoring all negative interactions, etc.)

• Propositionalization may yield combinatorial explosition in the presence of a large number of objects

–
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Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan
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Example of a Planning Graph (1)
Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

51

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at 
the initial state

Action is connected to its 
preconds & effects

Persistence Actions (noop)
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Example of a Planning Graph (2)
• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at 
previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and 
between conflicting literals

52

Mutual exclusion links S1 represents multiple states
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Mutex Links between Actions
1. Inconsistent effects: one action negates an effect of another

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another
– Eat(Cake) negates precondition of the noop of Have(Cake): 

3. Competing needs: A precondition on an action is mutex with the 
precondition of another
– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition
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Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can achieve 
the two literals is mutex.  Examples:
– In S1, Have(Cake) & Eaten(Cake) are mutex

– In S2, they are not because Bake(Cake) & the noop of Eaten(Cake) are 
not mutex
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Focus

• Building the Planning Graph

• Using it for Heuristic Estimation
– Planning graph as a relaxation of original problem

– Easy to build (compute)

• Using it for generating the plan
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Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by any 
plan
– State-space search: Any state containing an unachievable literal has cost 

h(n)=

– POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it appears
– Estimate is admissible for individual literals

– Estimate can be improved by serializing the graph (serial planning graph: one 
action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals
– Three heuristics: max level, level sum, set level 
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Estimate of Conjunction of Goal Literals

• Max-level
– The largest level of a literal in the conjunction

– Admissible, not very accurate

• Level sum 
– Under subgoal independence assumption, sums the level costs of the literals

– Inadmissible, works well for largely decomposable problems

• Set level
– Finds the level at which all literals appear w/o any pair of them being mutex

– Dominates max-level, works extremely well on problems where there is a great 
deal of interaction among subplans
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Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

– GraphPlan algorithm [Blum & Furst, 95]
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GRAPHPLAN algorithm
GRAPHPLAN(problem) returns solution or failure
graph  INITIALPLANNINGGRAPH(problem)
goals  GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph))
if solution  failure then return solution
else if NOSOLUTIONPOSSIBLE(graph) then return failure

graph  EXPANDGRAPH (graph,problem)

• Two main stages
1. Extract solution
2. Expand the graph
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Example of GRAPHPLAN Execution (1)

60

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan
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Example of GRAPHPLAN Execution (2)

61

• Three actions 

are applicable

• 3 actions and 5 

noops are added

• Mutex links are 

added

• At(Spare,Axle) 

still not in S1

• Plan is expanded
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Example of GRAPHPLAN Execution (3)
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• Illustrates well mutex links: inconsistent effects, interference, 
competing needs, inconsistent support
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Solution Extraction (Backward)

63

1. Solve a Boolean CSP:  Variables are actions, domains are 
{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward
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Backtrack Search for Solution Extraction

• Starting at the highest fact level
– Each goal is put in a goal list for the current fact layer

– Search iterates thru each fact in the goal list trying to find an action to support 
it which is not mutex with any other chosen action

– When an action is chosen, its preconditions are added to the goal list of the 
lower level

– When all facts in the goal list of the current level have a consistent assignment 
of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an action to 
each fact in the goal list at a given level

• Search succeeds when the first level is reached.
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Termination of GRAPHPLAN
• GRAPHPLAN is guaranteed to terminate

– Literal increase monotonically
– Actions increase monotonically
– Mutexes decrease monotinically

• A solution is guaranteed not to exist when
– The graph levels off with all goals present & non-

mutex, and

– EXTRACTSOLUTION fails to find solution
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Optimality of GRAPHPLAN 

• The plans generated by GRAPHPLAN 

– Are optimal in the number of steps needed to 
execute the plan

– Not necessarily optimal in the number of actions 
in the plan  (GRAPHPLAN produces partially 
ordered plans)
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Outline
• Background

– Situation Calculus
– Frame, qualification, & ramification problems

• Representation language
• Planning Algorithms

– State-Space Search
– Partial-Order Planning (POP)
– Planning Graphs (GRAPHPLAN)
– SAT Planners
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