
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE
III YEAR IV SEM

UNIT III – PLANNING

TOPIC – State-Space Search

13.3.24 AIPP Lecture 8: State-Space Search 2

State-Space Search
• Many problems in AI take the form of state-space search.

• The states might be legal board configurations in a game,

towns and cities in some sort of route map, collections of

mathematical propositions, etc.

• The state-space is the configuration of the possible states and

how they connect to each other e.g. the legal moves between

states.

• When we don't have an algorithm which tells us definitively

how to negotiate the state-space we need to search the state-

space to find an optimal path from a start state to a goal state.

• We can only decide what to do (or where to go), by considering

the possible moves from the current state, and trying to look

ahead as far as possible. Chess, for example, is a very difficult

state-space search problem.

13.3.24 AIPP Lecture 8: State-Space Search 3

Goal

State

Initial

State

A B
C

FED

G H

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

go(X,X,[X]).

go(X,Y,[X|T]):-

link(X,Z),

go(Z,Y,T).

| ?- go(a,c,X).

X = [a,e,f,c] ? ;

X = [a,b,f,c] ? ;

X = [a,b,c] ? ;

no

ConsultationSimple search algorithm

State-Space

An example problem: Searching a graph

13.3.24 AIPP Lecture 8: State-Space Search 4

State-Space Representation

• An abstract representation of a state-space is a downwards

growing tree. Connected nodes represent states in the domain.

• The branching factor denotes how many new states you can

move to from any state. This problem has an average of 2.

• The depth of a node denotes how many moves away from the

initial state it is. ‘C’ has two depths, 2 or 3.

A

E

D

C

B

F CF

Initial state is

the root

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).
C

13.3.24 AIPP Lecture 8: State-Space Search 5

Searching for the optimum
• State-space search is all about finding, in a state-space (which

may be extremely large: e.g. chess), some optimal state/node.

• `Optimal' can mean very different things depending on the

nature of the domain being searched.

• For a puzzle, `optimal' might mean the goal state e.g. connect4

• For a route-finder, like our problem, which searches for

shortest routes between towns, or components of an integrated

circuit, `optimal' might mean the shortest path between two

towns/components.

• For a game such as chess, in which we typically can't see the

goal state, `optimal' might mean the best move we think we

can make, looking ahead to see what effects the possible

moves have.

13.3.24 AIPP Lecture 8: State-Space Search 6

Implementing
To implement state-space search in Prolog, we need:

1. A way of representing a state e.g. the board configuration

• link(a,e).

2. A way of generating all of the next states reachable from

a given state;

• go(X,Y,[X|T]):- link(X,Z), go(Z,Y,T).

3. A way of determining whether a given state is the one we're

looking for. Sometimes this might be the goal state (a finished

puzzle, a completed route, a checkmate position); other times it

might simply be the state we estimate is the best, using some

evaluation function;
• go(X,X,[X]).

4. A mechanism for controlling how we search the space.

13.3.24 AIPP Lecture 8: State-Space Search 7

Depth-First Search

• This simple search algorithm uses Prolog’s unification routine

to find the first link from the current node then follows it.

• It always follows the left-most branch of the search tree first;

following it down until it either finds the goal state or hits a

dead-end. It will then backtrack to find another branch to follow.

= depth-first search.

A

E

D

C

B

F CF

| ?- go(a,c,X).

X = [a,e,f,c] ? ;

X = [a,b,f,c] ? ;

X = [a,b,c] ? ;

no

go(X,X,[X]).

go(X,Y,[X|T]):-

link(X,Z),

go(Z,Y,T).

C

13.3.24 AIPP Lecture 8: State-Space Search 8

Iterative Deepening: how it works?
|?- go(a,c,Sol).

go(a,a,[a]).

go(a,a,[a]).

go(a,Z,[a]). link(Z,c).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

Z=a
link(a,c).

|?- go(a,c,S).

13.3.24 AIPP Lecture 8: State-Space Search 9

Iterative Deepening
• If the optimal solution is the shortest path from the initial

state to the goal state depth-first search will usually not

find this.

• We need to vary the depth at which we look for a

solution; increasing the depth every time we have

exhausted all nodes at a particular depth.

• We can take advantage of Prolog’s backtracking to

implement this very simply.

Iterative Deepening

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

Check if current node is goal.

Find an intermediate node.

Check whether intermediate
links with goal.

Depth-First

go(X,X,[X]).

go(X,Y,[X|T]):-

link(X,Z),

go(Z,Y,T).

13.3.24 AIPP Lecture 8: State-Space Search 10

Iterative Deepening: how it works?
|?- go(a,c,Sol).

go(a,a,[a]).

go(a,a,[a]).

go(a,Z,[a]). link(Z,c).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

Z=a
link(a,c).

|?- go(a,c,S).

13.3.24 AIPP Lecture 8: State-Space Search 11

Iterative Deepening: how it works?
|?- go(a,c,Sol).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,Z,Sol).

go(a,Z1,Sol).

link(Z,c).

link(Z1,Z).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

Z1=a link(a,Z).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

|?- go(a,c,S).

13.3.24 AIPP Lecture 8: State-Space Search 12

Iterative Deepening: how it works?
|?- go(a,c,Sol).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,e,[e,a]).

go(a,Z1,[a]).

link(e,c).

link(a,e).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

Z1=a link(a,e).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

|?- go(a,c,S).

13.3.24 AIPP Lecture 8: State-Space Search 13

Iterative Deepening: how it works?
|?- go(a,c,[c,b,a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,b,[b,a]).

go(a,Z1,[a]).

link(b,c).

link(a,b).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

Z1=a link(a,b).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

|?- go(a,c,S).

S = [c,b,a]?

13.3.24 AIPP Lecture 8: State-Space Search 14

Iterative Deepening: how it works?
|?- go(a,c,Sol).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,Z,Sol).

go(a,Z1,Sol).

go(a,Z2,Sol). link(Z2,Z1).

link(Z,c).

link(Z1,Z).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

|?- go(a,c,S).

S = [c,b,a]?;

13.3.24 AIPP Lecture 8: State-Space Search 15

Iterative Deepening: how it works?
|?- go(a,c,Sol).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,a,[a]).

go(a,f,Sol).

go(a,e,Sol).

go(a,a,Sol). link(a,e).

link(f,c).

link(e,f).

link(g,h).

link(g,d).

link(e,d).

link(h,f).

link(e,f).

link(a,e).

link(a,b).

link(b,f).

link(b,c).

link(f,c).

go(X,X,[X]).

go(X,Y,[Y|T]):-

go(X,Z,T),

link(Z,Y).

|?- go(a,c,S).

S = [c,b,a]?;

S = [c,f,e,a]?

link(a,e).

13.3.24 AIPP Lecture 8: State-Space Search 16

Iterative Deepening (3)

• Iterative Deepening search is quite useful as:

– it is simple;

– reaches a solution quickly, and

– with minimal memory requirements as at any point in

the search it is maintaining only one path back to the

initial state.

• However:

– on each iteration it has to re-compute all previous

levels and extend them to the new depth;

– may not terminate (e.g. loop);

– may not be able to handle complex state-spaces;

– can’t be used in conjunction with problem-specific

heuristics as keeps no memory of optional paths.

13.3.24 AIPP Lecture 8: State-Space Search 17

Breadth-First Search

• A simple, common alternative to depth-first search is:

breadth-first search.

• This checks every node at one level of the space, before moving

onto the next level.

• It is distinct from iterative deepening as it maintains a list of

alternative candidate nodes that can be expanded at each depth

A

E

D

C

B

F CF

| ?- go(a,c,X).

X = [a,b,c] ? ;

X = [a,e,f,c] ? ;

X = [a,b,f,c] ? ;

no

C

1st

2nd

3rd

Depth-first

= A,ED,FC,BFC,C

Breadth-first

= A,EB,DFFC,CC

13.3.24 AIPP Lecture 8: State-Space Search 18

Depth-first vs. Breadth-first
Advantages of depth-first:

• Simple to implement;

• Needs relatively small

memory for storing the state-

space.

Disadvantages of depth-first:

• Can sometimes fail to find a

solution;

• Not guaranteed to find an

optimal solution;

• Can take a lot longer to find

a solution.

Advantages of breadth-first:

• Guaranteed to find a solution (if

one exists);

• Depending on the problem, can

be guaranteed to find an

optimal solution.

Disadvantages of breadth-first:

• More complex to implement;

• Needs a lot of memory for

storing the state space if the

search space has a high

branching factor.

13.3.24 AIPP Lecture 8: State-Space Search 19

Agenda-based search
• Both depth-first and breadth-first search can be

implemented using an agenda (breadth-first can only be

implemented with an agenda).

• The agenda holds a list of states in the state space, as we

generate (‘expand') them, starting with the initial state.

• We process the agenda from the beginning, taking the

first state each time. If that state is the one we're looking

for, the search is complete.

• Otherwise, we expand that state, and generate the states

which are reachable from it. We then add the new nodes

to the agenda, to be dealt with as we come to them.

13.3.24 AIPP Lecture 8: State-Space Search 20

Prolog for agenda-based search

Example Agenda = [[c,b,a],[c,f,e,a],[c,f,b,a]]

Here's a very general skeleton for agenda-based search:

search(Solution) :-

initial_state(InitialState),

agenda_search([[InitialState]], Solution).

agenda_search([[Goal|Path]|_], [Goal|Path]) :-

is_goal(Goal).

agenda_search([[State|Path]|Rest], Solution) :-

get_successors([State|Path], Successors),

update_agenda(Rest, Successors, NewAgenda),

agenda_search(NewAgenda, Solution).

13.3.24 AIPP Lecture 8: State-Space Search 21

Prolog for agenda-based search (2)

To complete the skeleton, we need to implement:

• initial_state/1,

– which creates the initial state for the state-space.

• is_goal/1,

– which succeeds if its argument is the goal state.

• get_successors/2

– which generates all of the states which are reachable from
a given state (should take advantage of findall/3,

setof/3 or bagof/3 to achieve this).

• update_agenda/2,

– which adds new states to the agenda (usually using
append/3).

13.3.24 AIPP Lecture 8: State-Space Search 22

Implementing DF and BF search

• With this basic skeleton, depth-first search and breadth-first

search may be implemented with a simple change:

– Adding newly-generated agenda items to the beginning of

the agenda implements depth-first search:

update_agenda(OldAgenda, NewStates, NewAgenda) :-

append(NewStates, OldAgenda, NewAgenda).

– Adding newly-generated agenda items to the end of the

agenda implements breadth-first search:

update_agenda(OldAgenda, NewStates, NewAgenda) :-

append(OldAgenda, NewStates, NewAgenda).

= We control how the search proceeds, by changing how the

agenda is updated.

13.3.24 AIPP Lecture 8: State-Space Search 23

Summary
• State-Space Search can be used to find optimal paths through

problem spaces.

• A state-space is represented as a downwards-growing tree

with nodes representing states and branches as legal moves

between states.

• Prolog’s unification strategy allows a simple implementation of

depth-first search.

• The efficiency of this can be improved by performing iterative

deepening search (using backtracking).

• Breadth-first search always finds the shortest path to the goal

state.

• Both depth and breadth-first search can be implemented using

an agenda:

– depth-first adds new nodes to the front of the agenda;

– breadth-first adds new nodes to the end.

