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Abduction

 Abduction is a reasoning process that tries to form plausible explanations
for abnormal observations

— Abduction is distinctly different from deduction and induction
— Abduction is inherently uncertain
 Uncertainty is an important issue in abductive reasoning
« Some major formalisms for representing and reasoning about uncertainty
— Mycin’s certainty factors (an early representative)
— Probability theory (esp. Bayesian belief networks)
— Dempster-Shafer theory
— Fuzzy logic
— Truth maintenance systems
— Nonmonotonic reasoning



Abduction

 Definition (Encyclopedia Britannica): reasoning that derives an explanatory
hypothesis from a given set of facts

— The inference result is a hypothesis that, if true, could explain the occurrence
of the given facts

« Examples
— Dendral, an expert system to construct 3D structure of chemical compounds
 [Fact: mass spectrometer data of the compound and its chemical formula
« KB: chemistry, esp. strength of different types of bounds

« Reasoning: form a hypothetical 3D structure that satisfies the chemical
formula, and that would most likely produce the given mass spectrum



Abduction examples (cont.)

— Medical diagnosis

 Facts: symptoms, lab test results, and other observed findings
(called manifestations)

« KB: causal associations between diseases and manifestations

 Reasoning: one or more diseases whose presence would causally
explain the occurrence of the given manifestations

— Many other reasoning processes (e.g., word sense disambiguation in
natural language process, image understanding, criminal investigation)
can also been seen as abductive reasoning



Comparing abduction, deduction, ¢

Deduction:

Abduction:

Induction:

major premise:
minor premise:

conclusion:

rule;
observation:
explanation:

case:
observation:

hypothesized rule:

and induction

All balls in the box are black
These balls are from the box
These balls are black

All balls in the box are black
These balls are black
These balls are from the box

These balls are from the box
These balls are black
All ball in the box are black

Deduction reasons from causes to effects
Abduction reasons from effects to causes
Induction reasons from specific cases to general rules

Possibly A

Whenever
Athen B
Possibly
A=>B




Characteristics of abductive
reasoning

“Conclusions” are hypotheses, not theorems (may be false
even If rules and facts are true)

— E.g., misdiagnosis in medicine

« There may be multiple plausible hypotheses

Given rules A => B and C => B, and fact B, both A and C are plausible
hypotheses

Abduction is inherently uncertain

Hypotheses can be ranked by their plausibility (if it can be determined)

NG



Characteristics of abductive
reasoning (cont.)

Reasoning is often a hypothesize-and-test cycle
Hypothesize: Postulate possible hypotheses, any of which would
explain the given facts (or at least most of the important facts)
Test: Test the plausibility of all or some of these hypotheses

— One way to test a hypothesis H is to ask whether something that is

currently unknown-but can be predicted from H-is actually true
« Ifwe also know A=>D and C =>E, thenask if D and E are

true
« If D istrue and E is false, then hypothesis A becomes more

plausible (support for A is increased; support for C is
decreased)



Characteristics of abductive
reasoning (cont.)

Reasoning Is non-monotonic

— That is, the plausibility of hypotheses can
Increase/decrease as new facts are collected

— In contrast, deductive inference is monotonic: it never
change a sentence’s truth value, once known

— In abductive (and inductive) reasoning, some
hypotheses may be discarded, and new ones formed,
when new observations are made



Sources of uncertainty

 Uncertain inputs
— Missing data
— Noisy data
 Uncertain knowledge
— Multiple causes lead to multiple effects
— Incomplete enumeration of conditions or effects
— Incomplete knowledge of causality in the domain
— Probabilistic/stochastic effects
 Uncertain outputs
— Abduction and induction are inherently uncertain
— Default reasoning, even in deductive fashion, is uncertain
— Incomplete deductive inference may be uncertain
» Probabilistic reasoning only gives probabilistic results (summarizes

uncertainty from various sources)



Decision making with uncertainty

 Rational behavior:
— For each possible action, identify the possible outcomes
— Compute the probability of each outcome
— Compute the utility of each outcome
— Compute the probability-weighted (expected) utility
over possible outcomes for each action

— Select the action with the highest expected utility
(principle of Maximum Expected Utility)
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Bayesian reasoning

* Probability theory

 Bayesian inference
— Use probability theory and information about independence
— Reason diagnostically (from evidence (effects) to conclusions
(causes)) or causally (from causes to effects)
 Bayesian networks

— Compact representation of probability distribution over a set of
propositional random variables

— Take advantage of independence relationships

11



Other uncertainty representations

 Default reasoning
— Nonmonotonic logic: Allow the retraction of default beliefs if they prove to be false
 Rule-based methods

— Certainty factors (Mycin): propagate simple models of belief through causal or
diagnostic rules

« Evidential reasoning

— Dempster-Shafer theory: Bel(P) is a measure of the evidence for P; Bel(—P) is a
measure of the evidence against P; together they define a belief interval (lower and
upper bounds on confidence)

» Fuzzy reasoning
— Fuzzy sets: How well does an object satisfy a vague property?
— Fuzzy logic: “How true” is a logical statement?
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Uncertainty tradeoffs

Bayesian networks: Nice theoretical properties combined with efficient
reasoning make BNs very popular; limited expressiveness, knowledge
engineering challenges may limit uses

Nonmonotonic logic: Represent commonsense reasoning, but can be
computationally very expensive

Certainty factors: Not semantically well founded

Dempster-Shafer theory: Has nice formal properties, but can be
computationally expensive, and intervals tend to grow towards [0,1] (not a very
useful conclusion)

Fuzzy reasoning: Semantics are unclear (fuzzy!), but has proved very useful
for commercial applications

13



Bayesian Reasoning



Outline

* Probability theory

 Bayesian inference
— From the joint distribution
— Using independence/factoring
— From sources of evidence

15



Sources of uncertainty

 Uncertain inputs
— Missing data
— Noisy data
 Uncertain knowledge
— Multiple causes lead to multiple effects
— Incomplete enumeration of conditions or effects
— Incomplete knowledge of causality in the domain
— Probabilistic/stochastic effects
 Uncertain outputs
— Abduction and induction are inherently uncertain
— Default reasoning, even in deductive fashion, is uncertain
— Incomplete deductive inference may be uncertain
» Probabilistic reasoning only gives probabilistic results (summarizes

uncertainty from various sources)
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Decision making with uncertainty

 Rational behavior:
— For each possible action, identify the possible outcomes
— Compute the probability of each outcome
— Compute the utility of each outcome

— Compute the probability-weighted (expected) utility over possible
outcomes for each action

— Select the action with the highest expected utility (principle of
Maximum Expected Utility)

17



Why probabilities anyway?

« Kolmogorov showed that three simple axioms lead to the
rules of probability theory

— De Finetti, Cox, and Carnap have also provided compelling
arguments for these axioms

1. All probabilities are between 0 and 1:
0<P(a)<1
2. Valid propositions (tautologies) have probability 1, and
unsatisfiable propositions have probability O:
P(true) =1 ; P(false) =0
3. The probability of a disjunction @
P(av b)=P(a) +P(b)—P(aab)

18
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Probability theory

« Random variables
— Domain

« Atomic event: complete
specification of state

* Prior probability: degree of
belief without any other evidence

 Joint probability: matrix of
combined probabilities of a set of
variables

Alarm, Burglary, Earthquake
— Boolean (like these), discrete, continuous

(Alarm=True A Burglary=True A
Earthquake=False) or equivalently
(alarm A burglary A —earthquake)

P(Burglary) = 0.1

P(Alarm, Burglary) =

alarm -alarm

burglary 0.09 0.01

=burglary 0.1 0.8

19



Probability theory (cont.)

Conditional probability:
probability of effect given causes
Computing conditional probs:
— P(a|b)=P(@ A b)/P(b)

— P(b): normalizing constant
Product rule:

— P(aAb)=P(a|b)P(b)
Marginalizing:

— P(B)=%,P(B, a)

— P(B)=%,P(B|a) P(a)
(conditioning)

P(burglary | alarm) = 0.47
P(alarm | burglary) = 0.9

» P(burglary | alarm) =

P(burglary A alarm) / P(alarm)
=0.09/0.19=0.47

P(burglary A alarm) =
P(burglary | alarm) P(alarm) =
0.47*0.19=0.09

P(alarm) =
P(alarm A burglary) +
P(alarm A =burglary) =
0.09+0.1=0.19

20



Example: Inference from the joint

alarm —alarm

earthquake -earthquake earthquake —earthquake
burglary 0.01 0.08 0.001 0.009
=burglary 0.01 0.09 0.01 0.79

P(Burglary | alarm) = o P(Burglary, alarm)

= a [P(Burglary, alarm, earthquake) + P(Burglary, alarm, -earthquake)
=a[(0.01,0.01) + (0.08,0.09) ]

=a[(0.09,0.1)]
Since P(burglary | alarm) + P(=burglary | alarm) = 1, o = 1/(0.09+0.1) = 5.26

(i.e., P(alarm) = 1/0.= 0.109

P(burglary | alarm) = 0.09 * 5.26 = 0.474
P(-burglary | alarm) = 0.1 * 5.26 = 0.526

Quizlet: how can you verify this?)




Exercise: Inference from the joint
smart —smart
p(smart A
study A prep) study | —study study —study
prepared 0.432 0.16 0.084 0.008
—prepared 0.048 0.16 0.036 0.072
« Queries:

— What is the prior probability of smart?

— What is the prior probability of study?

— What is the conditional probability of prepared, given study and smart?
 Save these answers for next time! ©



Independence

» When two sets of propositions do not affect each others’ probabilities, we call
them independent, and can easily compute their joint and conditional
probability:

— Independent (A, B) <« P(A AB)=P(A) P(B), P(A|B)=P(A)

« For example, {moon-phase, light-level} might be independent of {burglary,

alarm, earthquake}

— Then again, it might not: Burglars might be more likely to burglarize houses when
there’s a new moon (and hence little light)

— But if we know the light level, the moon phase doesn’t affect whether we are
burglarized

— Once we’re burglarized, light level doesn’t affect whether the alarm goes off

» We need a more complex notion of independence, and methods for reasoning
about these kinds of relationships

23



Exercise: Independence
smart —smart
p(smart A
study A prep) study | —study study —study
prepared 0.432 0.16 0.084 0.008
—prepared 0.048 0.16 0.036 0.072

e Querles:

— Is smart independent of study?

— Is prepared independent of study?

24
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Conditional independence

Absolute independence:

— Aand B are independent if and only if P(A A B) = P(A) P(B); equivalently, P(A) =
P(A|B)andP(B) =P(B|A)

A and B are conditionally independent given C if and only if
— P(AAB|C)=P(A|C)PB|C)
This lets us decompose the joint distribution:
— P(AABAC)=P(A|C)P(B|C)PC)
Moon-Phase and Burglary are conditionally independent given Light-Level

Conditional independence is weaker than absolute independence, but still useful
in decomposing the full joint probability distribution

25



Exercise: Conditional independence

smart —smart
p(smart A
study A prep) study | —study study —study
prepared 0.432 0.16 0.084 0.008
—prepared 0.048 0.16 0.036 0.072
* Queries:

— Is smart conditionally independent of prepared, given
study?

— Is study conditionally independent of prepared, given
smart?

26



Bayes’s rule

* Bayes’s rule 1s derived from the product rule:
— P(Y | X) =P(X]Y) P(Y) /P(X)
» Often useful for diagnosis:
— If X are (observed) effects and Y are (hidden) causes,

— We may have a model for how causes lead to effects (P(X | Y))

— We may also have prior beliefs (based on experience) about the
frequency of occurrence of effects (P(Y))

— Which allows us to reason abductively from effects to causes (P(Y |

X)).

27



Bayesian inference

* In the setting of diagnostic/evidential reasoning

H. P(H)) hypotheses
P(Eyl \
E. ... E;i .. E., evidence/m anifestati ons
P(H;)
- _g = - P(EJ | HI)
— Know prior probability of hypothesis P(H;|E))

conditional probability
— Want t& oomipgete the gdsierier; proDa s iey,)

e Bayes’ theorem (formula 1):

28



Simple Bayesian diagnostic reasoning

« Knowledge base:
— Evidence / manifestations:  E,, ..., E,

— Hypotheses / disorders: Hy, ..., H;

* E;and H; are binary; hypotheses are mutually exclusive (non-
overlapping) and exhaustive (cover all possible cases)

— Conditional probabilities: P(Ej|H),i=1,...,n;j=1,...,m
« Cases (evidence for a particular instance): E,, ..., E,

 Goal: Find the hypothesis H; with the highest posterior
— Max; P(H; |E, ..., E,)

29



Bayesian diagnostic reasoning ||

« Bayes’ rule says that
~ P(H;|Ey, ..., E) =P(E,, ..., Ey | H) P(H) / P(E, ..., E,)
 Assume each piece of evidence E; is conditionally
Independent of the others, given a hypothesis H,, then:
— P(Ey, .., Ep [ H) = Hmjzl P(E; | H))
« |f we only care about relative probabilities for the H,, then
we have:
— P(Hi | Eq, ..., Ep) = a P(H)) Hmjzl P(Ej | H))

30



Limitations of simple
Bayesian inference

 Cannot easily handle multi-fault situation, nor cases where intermediate
(hidden) causes exist:

— Disease D causes syndrome S, which causes correlated manifestations M,
and M,
 Consider a composite hypothesis H; A H,, where H, and H,, are
Independent. What is the relative posterior?
— PH,AH,|E, ....,E ) =aP(E, ..., E, | HL A H,) P(H; A H))

=aP(Ey, ..., Eqy | Hy A Hp) P(Hy) P(Hy)
=a ]I, P(E;[ Hy A Hy) P(Hy) P(Hy)

- How do we compute P(E; | H; A Hy) ??
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Limitations of simple Bayesian
Inference I

Assume H, and H, are independent, given E,, ..., E?

— P(H; AH,|Ey,....,E) =P(H, | E,, ..., E) P(H, | Ey, ..., E,,)
This is a very unreasonable assumption

— Earthquake and Burglar are independent, but not given Alarm:

» P(burglar | alarm, earthquake) << P(burglar | alarm)

Another limitation is that simple application of Bayes’s rule doesn’t allow us to handle
causal chaining:

— A: this year’s weather; B: cotton production; C: next year’s cotton price

— A influences C indirectly: A— B — C

— P(C|B, A) =P(C|B)
Need a richer representation to model interacting hypotheses, conditional independence,
and causal chaining

Next time: conditional independence and Bayesian networks!
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