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Speech Recognition
• Given an audio waveform, 

would like to robustly extract & 
recognize any spoken words

• Statistical models can be used 
to

 Provide greater robustness to 
noise

 Adapt to accent of different 
speakers

 Learn from training

S. Roweis, 2004



Target Tracking

Radar-based tracking

of multiple targets

Visual tracking of

articulated objects
(L. Sigal et. al., 2006)

• Estimate motion of targets in 3D world from 

indirect, potentially noisy measurements



Robot Navigation: SLAM
Simultaneous Localization and Mapping

CAD

Map

Estimated

Map

Landmark

SLAM

• As robot moves, estimate its 

pose & world geometry

(S. Thrun,

San Jose Tech Museum)

(E. Nebot,

Victoria Park)



Financial Forecasting

• Predict future market behavior from historical data, news 

reports, expert opinions, …

http://www.steadfastinvestor.com/



Biological Sequence Analysis

• Temporal models can be adapted to exploit more general forms of 
sequential structure, like those arising in DNA sequences 

(E. Birney, 2001)



Analysis of Sequential Data
• Sequential structure arises in a huge range of applications

 Repeated measurements of a temporal process

 Online decision making & control

 Text, biological sequences, etc

• Standard machine learning methods are often difficult to 

directly apply
 Do not exploit temporal correlations

 Computation & storage requirements typically scale poorly to realistic 

applications
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Sequential Processes
• Consider a system which can occupy one of N

discrete states or categories

• We are interested in stochastic systems, in which 

state evolution is random

• Any joint distribution can be factored into a series of 

conditional distributions:

state at time t



Markov Processes
• For a Markov process, the next state 

depends only on the current state:

• This property in turn implies that

“Conditioned on the present,

the past & future are independent”



State Transition Matrices
• A stationary Markov chain with N states is described 

by an NxN transition matrix:

• Constraints on valid transition matrices:



State Transition Diagrams

• Think of a particle randomly following an arrow at 

each discrete time step

• Most useful when N small, and Q sparse
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Graphical Models – A Quick Intro
• A way of specifying conditional independences.

• Directed Graphical Modes: a DAG

• Nodes  are random variables.

• A node’s distribution depends on its parents.

• Joint distribution:

• A node’s value conditional on its parents is independent of other ancestors.
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Markov Chains: Graphical Models
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• Graph interpretation differs 

from state transition diagrams:

nodes

state values at

particular times
edges

Markov

properties



Embedding Higher-Order Chains

• Each new state depends on fixed-length window of 

preceding state values

• We can represent this as a first-order model via state 

augmentation: 

(N2 augmented states)



Continuous State Processes
• In many applications, it is more natural to define 

states in some continuous, Euclidean space: 

parameterized family of

state transition densities

• Examples: stock price, aircraft position, … 



Hidden Markov Models
• Few realistic time series directly satisfy the assumptions of Markov processes:

• Motivates hidden Markov models (HMM):

“Conditioned on the present,

the past & future are independent”

hidden

states

observed

process



Hidden states
hidden

states

observed

process

• Given     , earlier observations provide no 

additional information about the future:

• Transformation of process under which 

dynamics take a simple, first-order form 



Where do states come from?
hidden

states

observed

process

• Analysis of a physical phenomenon:
 Dynamical models of an aircraft or robot

 Geophysical models of climate evolution

• Discovered from training data:
 Recorded examples of spoken English
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Discrete State HMMs

hidden

states

observed

process

• Associate each of the N hidden states with a different 

observation distribution:

• Observation densities are typically chosen to encode domain 

knowledge



Discrete HMMs: Observations
Discrete Observations

Continuous Observations



Specifying an HMM

• Observation model:

• Transition model:

• Initial state distribution:           



Gilbert-Elliott Channel Model
Hidden State:

Observations:

small

large

Simple model for correlated, bursty noise 
Time

(Elliott, 1963)



Discrete HMMs: Inference
• In many applications, we would like to infer hidden states from 

observations

• Suppose that the cost incurred by an estimated state 

sequence decomposes:

true state

estimated state

• The expected cost then depends only on the 

posterior marginal distributions:



Filtering & Smoothing
• For online data analysis, we seek filtered state estimates 

given earlier observations:

• In other cases, find smoothed estimates given earlier and 

later of observations:

• Lots of other alternatives, including

fixed-lag smoothing & prediction: 



Markov Chain Statistics

• By definition of conditional probabilities,



Discrete HMMs: Filtering

Normalization

constant
Prediction:

Update:

Incorporates T observations in                 operations



Discrete HMMs: Smoothing

• The forward-backward algorithm updates filtering via a reverse-

time recursion:



Optimal State Estimation

• Probabilities measure the posterior confidence in the true hidden states

• The posterior mode minimizes the number of incorrectly assigned states:

• What about the state sequence with the highest joint probability?

Bit or symbol

error rate

Word or sequence

error rate



Viterbi Algorithm

• Use dynamic programming to recursively find the probability of 

the most likely state sequence ending with each

• A reverse-time, backtracking procedure then picks the 

maximizing state sequence



Time Series Classification
• Suppose I’d like to know which of 2 HMMs best explains an 

observed sequence

• This classification is optimally determined by the following log-

likelihood ratio:

• These log-likelihoods can be computed from filtering 

normalization constants



Discrete HMMs: Learning I
• Suppose first that the latent state sequence is available during 

training

• The maximum likelihood estimate equals

(observation distributions)

• For simplicity, assume observations are Gaussian with known 

variance & mean



Discrete HMMs: Learning II
• The ML estimate of the transition matrix is determined by 

normalized counts: 

number of times 

observed before

• Given x, independently estimate the output distribution for each 

state:



Discrete HMMs: EM Algorithm
• In practice, we typically don’t know the hidden states for our 

training sequences

• The EM algorithm iteratively maximizes a lower bound on the 

true data likelihood: 

E-Step:  Use current parameters to estimate state

M-Step:  Use soft state estimates to update parameters

Applied to HMMs, equivalent to the Baum-Welch algorithm



Discrete HMMs: EM Algorithm
• Due to Markov structure, EM parameter 

updates use local statistics, computed by the 

forward-backward algorithm (E-step)

• The M-step then estimates observation 

distributions via a weighted average:

• Transition matrices estimated similarly… 

• May encounter local minima; initialization 

important.
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Linear State Space Models

• States & observations jointly Gaussian:
 All marginals & conditionals Gaussian

 Linear transformations remain Gaussian



Simple Linear Dynamics

Time Time

Brownian Motion Constant Velocity



Kalman Filter

Prediction:

Update:

• Represent Gaussians by mean & covariance:

Kalman Gain:



Kalman Filtering as Regression

• The posterior mean minimizes the mean squared prediction 

error:

• The Kalman filter thus provides an optimal online regression

algorithm



Constant Velocity Tracking
Kalman Filter Kalman Smoother

(K. Murphy, 1998)



Nonlinear State Space Models

• State dynamics and measurements given by 

potentially complex nonlinear functions

• Noise sampled from non-Gaussian distributions



Examples of Nonlinear Models

Dynamics implicitly determined

by geophysical simulations

Observed image is a complex

function of the 3D pose, other

nearby objects & clutter, lighting

conditions, camera calibration, etc.



Nonlinear Filtering

Prediction:

Update:



Approximate Nonlinear Filters

• Typically cannot directly represent these continuous functions, or determine 

a closed form for the prediction integral

• A wide range of approximate nonlinear filters have thus been proposed, 

including

 Histogram filters

 Extended & unscented Kalman filters

 Particle filters

 …



Nonlinear Filtering Taxonomy
Histogram Filter:
 Evaluate on fixed discretization grid

Only feasible in low dimensions

 Expensive or inaccurate

Extended/Unscented Kalman Filter:
 Approximate posterior as Gaussian via 

linearization, quadrature, …

 Inaccurate for multimodal 

posterior distributions

Particle Filter:
 Dynamically evaluate states with highest 

probability

Monte Carlo approximation



Importance Sampling
true distribution (difficult to sample from)
assume may be evaluated up to normalization Z

proposal distribution (easy to sample from)

• Draw N weighted samples from proposal:

• Approximate the target distribution via a weighted mixture of 

delta functions:

• Nice asymptotic properties as



Particle Filters
Condensation, Sequential Monte Carlo, Survival of the Fittest,…

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 

using a set of samples

• Dynamics provide proposal 

distribution for likelihood



Particle Filtering Movie

(M. Isard, 1996)



Particle Filtering Caveats
• Easy to implement, effective in many applications, BUT

 It can be difficult to know how many samples to use, or to tell when the 

approximation is poor

 Sometimes suffer catastrophic failures, where NO particles have 

significant posterior probability

 This is particularly true with “peaky” observations in high-dimensional

spaces:

dynamics

likelihood



Continuous State HMMs
• There also exist algorithms for other learning & inference tasks in 

continuous-state HMMs:

 Smoothing

 Likelihood calculation & classification

 MAP state estimation

 Learning via ML parameter estimation

• For linear Gaussian state space models, these are easy generalizations 

of discrete HMM algorithms

• Nonlinear models can be more difficult…
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More on Graphical Models
• Many applications have rich structure, but are not simple time series or 

sequences:

 Physics-based model of a complex system

 Multi-user communication networks

 Hierarchical taxonomy of documents/webpages 

 Spatial relationships among objects

 Genetic regulatory networks

 Your own research project?

• Graphical models provide a framework for:

 Specifying statistical models for complex systems

 Developing efficient learning algorithms

 Representing and reasoning about complex joint distributions.



Types of Graphical Models

Nodes Random

Variables

Edges
Probabilistic

(Markov)

Relationships

Directed Graphs Undirected Graphs

Specify a hierarchical, causal 

generative process (child nodes 

depend on parents)

Specific symmetric, non-causal 

dependencies (soft or probabilistic 

constraints)



Quick Medical Reference (QMR) 

model
• A probabilistic graphical model for diagnosis with 

600 disease nodes, 4000 finding nodes

• Node probabilities              were assessed from an 
expert (Shwe et al., 1991)



Directed Graphical Models
• AKA Bayes Net.

• Any distribution can be written as

• Here, if the variables are topologically sorted (parents come before children)  

• Much simpler: an arbitrary                          is a huge (n-1) dimensional 

matrix.

• Inference: knowing the value of some of the nodes, infer the rest.

• Marginals, MAP



Plates

• A plate is a “macro” that allows subgraphs to be 
replicated 

• Graphical representation of an exchangeability
assumption for 



Elimination Algorithm
• Takes a graphical model and produces one without a particular node puts the same 

probability distribution on the rest of the nodes.

• Very easy on trees, possible (though potentially computationally expensive) on 

general DAGs.

• If we eliminate all but one node, that tells us the distribution of that node.



Elimination Algorithm (cont)

• The symbolic counterpart of elimination is equivalent to 

triangulation of the graph

• Triangulation: remove the nodes sequentially; when a node is 

removed, connect all of its remaining neighbors

• The computational complexity of elimination scales as 

exponential in the size of the largest clique in the triangulated 

graph



Markov Random Fields in Vision

fMRI Analysis (Kim et. al. 2000)

Image Denoising
(Felzenszwalb & Huttenlocher 2004)

Segmentation & Object Recognition
(Verbeek & Triggs 2007)

Idea: Nearby pixels are similar.



Dynamic Bayesian Networks
Specify and exploit internal structure in the

hidden states underlying a time series.

Generalizes HMMs 
Maneuver

Mode

Spatial 

Position

Noisy

Observations



DBN Hand Tracking Video

Isard et. al., 1998



Topic Models for Documents

D. Blei, 2007



Topics Learned from Science

D. Blei, 2007



Temporal Topic Evolution

D. Blei, 2007



Bioinformatics

Protein Folding
(Yanover & Weiss 2003)

Computational

Genomics
(Xing & Sohn 2007)



Learning in Graphical Models
Tree-Structured Graphs

There are direct, efficient extensions of 

HMM learning and inference algorithms

• Junction Tree: Cluster nodes to remove cycles (exact, 

but computation exponential in “distance” of graph from 

tree)

• Monte Carlo Methods: Approximate learning via 

simulation (Gibbs sampling, importance sampling, …)

• Variational Methods: Approximate learning via 

optimization (mean field, loopy belief propagation, …) 

Graphs with Cycles
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