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P(sum to7) = =7 = -

P(sum to 12) =



unconditional probability

degree of belief in a proposition
iIn the absence of any other evidence



conditional probability

degree of belief in a proposition
given some evidence that has already

been revealed



conditional probability

P(a | b)



P(rain today | rain yesterday)



P(route change | traffic conditions)



P(disease | test results)



P(a AD)

Pla|b) = )



P(sum 12 |8B)
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P(sum 12) = —3%
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R P(suin 12 '3B) = -
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P(a NDb)

P(a|b) = 0

P(a ANb) = P(b)P(a|b)
Pla Nb) = P(a)P(b|a)



random variable

a variable in probability theory with a
domain of possible values it can take on



random variable
Roll

{]9 29 39 49 59 6}



random variable

Weather

tsun, cloud, rain, wind, snow}



random variable

Iraffic

tnone, light, heavy}



random variable
Flight

ton time, delayed, cancelled}



probability distribution

P(Flight = on time) = 0.6
P(Flight = delayed) = 0.3
P(Flight = cancelled) = 0.1



probability distribution
P(Flight) = (0.6, 0.3, 0.1)



iIndependence

the knowledge that one event occurs does
not affect the probability of the other event



iIndependence
P(a Ab) = P(a)P(b|a)



independence
P(a Ab) = P(a)P(b)



independence
P(EBEB) = P(88)P(8)
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independence

P(EB®) 7 P(8)P(W)
1.1_ 1

”~ ~ ~™ -



independence

P(EB8B) # P(88)P( 88 [8B)
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Bayes' Rule



P(a ANb) = P(b) P(a|b)

P(a Ab) P(a) P(b|a)



P(a) P(b|a) = P(b) P(a|b)



Bayes' Rule

P(b) P(a|b)
P(a)

P(b|a) =



Bayes' Rule

P(a|b) P(b)
P(a)

P(b|a) =



e

Given clouds in the morning,
what's the probability of rain in the afternoon?

« 80% of rainy afternoons start with cloudy
mornings.

* 40% of days have cloudy mornings.
e 10% Nnf dAave have rainv afternnnne



P(clouds | rain)P(rain)
P(clouds)

(:8)(.1)
4

P(rain|clouds) =

0.2



Knowing

P(cloudy morning | rainy afternoon)
we can calculate

P(rainy afternoon | cloudy morning)



Knowing
P(visible effect | unknown cause)
we can calculate

P(unknown cause | visible effect)



Knowing
P(medical test result | disease)
we can calculate

P(disease | medical test result)



Knowing
P(blurry text | counterfeit bill)
we can calculate

P(counterfeit bill | blurry text)



Joint Probability
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P(C | rain)

‘ P(C, rain) .
P(C | rain) = . = oP(C, rain)
P(rain)

= 0(0.08, 0.02) = (0.8, 0.2)

R = rain R = —rain
- C=cloud 0.08 0.32




Probability Rules



Negation

P(=a)= 1-—P(a)



Inclusion-Exclusion

P(a vV b) = P(a)+ P(b) — P(a AD)



Marginalization

P(a) = P(a,b) + P(a,b)



Marginalization

P(szi):z P(X=x,f,Y=)/j-)

J



Marginalization
| R = rain R = —rain
- C=cloud 0.08 0.32
C = ~cloud 0.02 0.58
P(C = cloud)
= P(C = cloud, R = rain) + P(C = cloud, R = ~rain)
=0.08 +0.32
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Conditioning

P(a) = P(a|b)P(b) + P(a|~b)P(~b)



Conditioning

PX=1x)=s PWX=x|Y=y)P{¥=y)

J



Bayesian Networks



Bayesian network

data structure that represents the
dependencies among random variables



Bayesian network

» directed graph

« each node represents a random variable

« arrow from Xto Y means Xis a parent of ¥

« each node X has probability distribution
P(X | Parents(X))
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( Rain ) Computing Joint Probabilities
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( Rain ) Computing Joint Probabilities
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( Rain ) Computing Joint Probabilities
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( Rain ) Computing Joint Probabilities

\none, light, heavy|

.

Maintenance
\ves, no|

. .

Train
ton time, delaved )

!
[ Appointment J
tattend, miss | . _ .
adcadenliss P(light, no, delayed, miss)




Inference



Inference

* Query X: variable for which to compute distribution
* Evidence variables E: observed variables for event e

* Hidden variables Y: non-evidence, non-query variable.

* Goal: Calculate P(X | e)



Rain
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Inference by Enumeration

PX|e)=aPX,e)=as P(X,e,y)
;

X is the query variable.
eis the evidence.
y ranges over values of hidden variables.



Approximate Inference



Sampling
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R = none

Rain none light heavy
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R = none
M = yes
T=ontime

A = attend



R = light
M = no

T=ontime

A = miss
R = none
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P(Train = on time) ?
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P(Rain = light | Train = on time) ?
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Rejection Sampling



Likelihood Weighting



Likelihood Weighting

* Start by fixing the values for evidence variables.

* Sample the non-evidence variables using conditional
probabilities in the Bayesian Network.

* Weight each sample by its likelihood: the probability
of all of the evidence.



P(Rain = light | Train = on time) ?
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Uncertainty over Time
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Markov assumption

the assumption that the current state
depends on only a finite fixed number of
previous states



Markov Chain



Markov chain

a sequence of random variables where the
distribution of each variable follows the
Markov assumption



Transition Model
Tomorrow (Xi+1)
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Sensor Models



Hidden State

Observation

robot's position
words spoken
user engagement

weather

robot's sensor data
audio waveforms
website or app analytics

umbrella



Hidden Markov Models



Hidden Markov Model

a Markov model for a system with hidden
states that generate some observed event



Sensor Model
Observation (E)

0.2 0.8

0.9 0.1



sensor Markov assumption

the assumption that the evidence variable
depends only the corresponding state
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Task Definition

given observations from start until now,

filtering calculate distribution for current state
dicti given observations from start until now,
pregicHorn calculate distribution for a future state
; given observations from start until now,
smoothing calculate distribution for past state
most likely given observations from start until now,

explanation calculate most likely sequence of states



