

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE

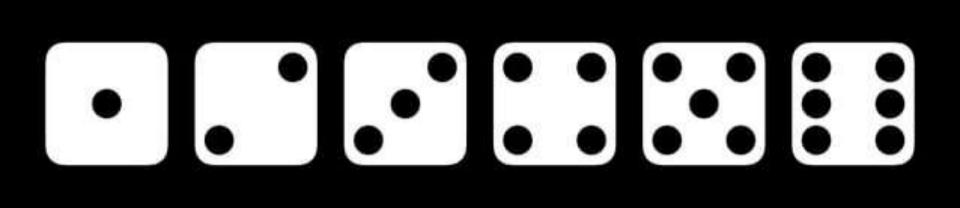
UNIT IV - UNCERTAIN KOWLEDGE AND REASONING

TOPIC - PROBABLISTIC AND UNCERTAINTY

Uncertainty

NEXT 36 HOURS

HOURLY → 10 DAYS →



Probability

Possible Worlds

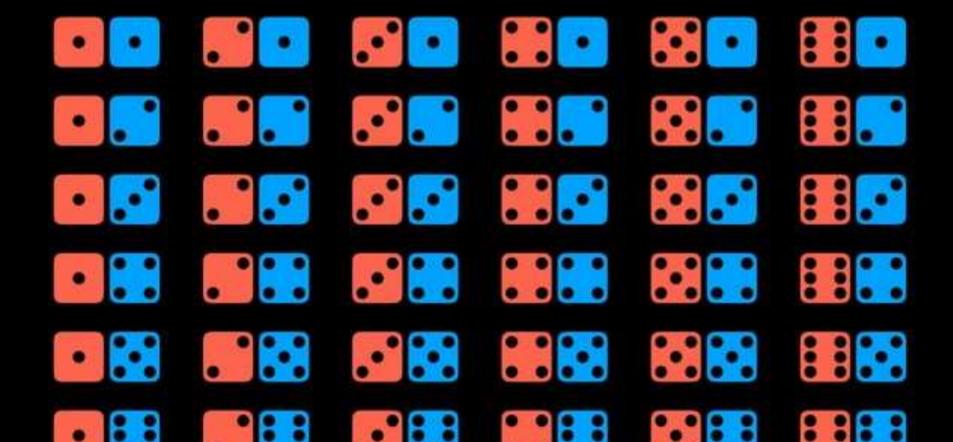
 $P(\omega)$

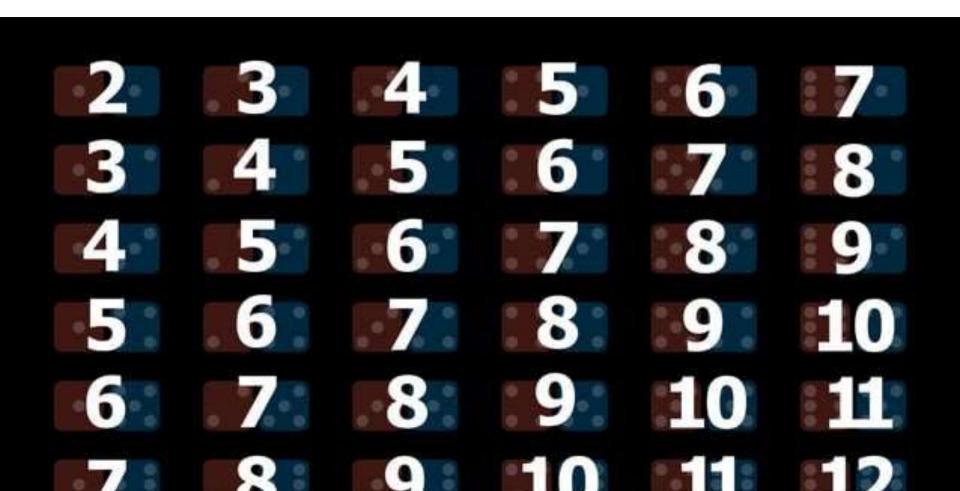
$0 \le P(\omega) \le 1$

$\sum_{\omega \in \Omega} P(\omega) = 1$

 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

$$P(\begin{array}{c} \bullet \\ \bullet \end{array}) = \frac{1}{6}$$





2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	
7	8	9	10		12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10		12

 $P(sum\ to\ 12) =$

 $P(sum\ to\ 7) =$

unconditional probability

degree of belief in a proposition in the absence of any other evidence

conditional probability

degree of belief in a proposition given some evidence that has already been revealed

conditional probability

 $P(a \mid b)$

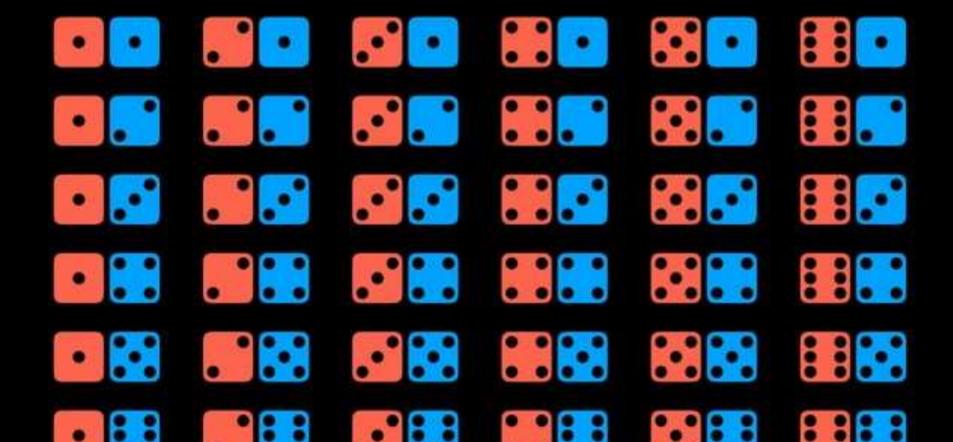
P(rain today | rain yesterday)

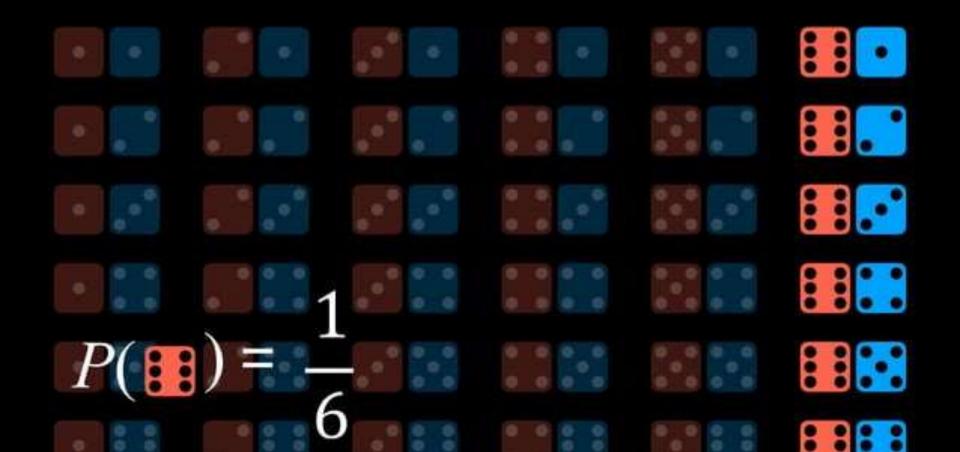
P(route change | traffic conditions)

P(disease | test results)

$P(a \mid b) = \frac{P(a \land b)}{P(b)}$

P(sum 12 | 111)





$$P(sum 12) = \frac{1}{36}$$

$$P(sum 12 \mid sum 12 \mid sum$$

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

$$P(a \wedge b) = P(a)P(b \mid a)$$

 $P(a \wedge b) = P(b)P(a \mid b)$

a variable in probability theory with a domain of possible values it can take on

 $\{1, 2, 3, 4, 5, 6\}$

Roll

Weather

{sun, cloud, rain, wind, snow}

{none, light, heavy}

Traffic

Flight

{on time, delayed, cancelled}

probability distribution

 $P(Flight = on \ time) = 0.6$ P(Flight = delayed) = 0.3P(Flight = cancelled) = 0.1

probability distribution

$$P(Flight) = (0.6, 0.3, 0.1)$$

the knowledge that one event occurs does not affect the probability of the other event

 $P(a \wedge b) = P(a)P(b \mid a)$

 $P(a \wedge b) = P(a)P(b)$

$$P(\blacksquare \blacksquare) = P(\blacksquare \blacksquare)P(\blacksquare \blacksquare)$$

$$=\frac{1}{36}$$

$$P(\blacksquare \blacksquare) \neq P(\blacksquare)P(\blacksquare)$$

$$=\frac{1}{6}\cdot\frac{1}{6}=\frac{1}{36}$$

$$P(\blacksquare \blacksquare) \neq P(\blacksquare)P(\blacksquare \blacksquare)$$

$$=\frac{1}{1}\cdot 0 = 0$$

Bayes' Rule

$$P(a \wedge b) = P(b) P(a \mid b)$$

 $P(a \wedge b) \quad P(a) P(b \mid a)$

P(a) P(b|a) = P(b) P(a|b)

Bayes' Rule

$$P(b \mid a) = \frac{P(b) P(a \mid b)}{P(a)}$$

Bayes' Rule

$$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)}$$

Given clouds in the morning, what's the probability of rain in the afternoon?

- 80% of rainy afternoons start with cloudy mornings.
- 40% of days have cloudy mornings.
- 10% of days have rainy afternoons

$$P(rain | clouds) = \frac{P(clouds | rain)P(rain)}{P(clouds)}$$

(.8)(.1)

P(cloudy morning | rainy afternoon)

we can calculate

P(rainy afternoon | cloudy morning)

P(visible effect | unknown cause)

we can calculate

P(unknown cause | visible effect)

P(medical test result | disease)

we can calculate

P(disease | medical test result)

P(blurry text | counterfeit bill)

we can calculate

P(counterfeit bill | blurry text)

Joint Probability

C = cloud	$C = \neg cloud$
0.4	0.6

R = rain	$R = \neg rain$
0.1	0.9

	R = rain	$R = \neg rain$
C = cloud	0.08	0.32
	and the second	140004000

 $P(C \mid rain)$

$$P(C \mid rain) = \frac{P(C, rain)}{P(rain)} = \alpha P(C, rain)$$

$$R = rain \qquad R = \neg rain$$

$$C = cloud \qquad 0.08 \qquad 0.32$$

 $= \alpha (0.08, 0.02) = (0.8, 0.2)$

Probability Rules

Negation

$$P(\neg a) = 1 - P(a)$$

Inclusion-Exclusion

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Marginalization

$$P(a) = P(a,b) + P(a, \neg b)$$

Marginalization

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j)$$

Marginalization

	R = rain	$R = \neg rain$
C = cloud	0.08	0.32
$C = \neg cloud$	0.02	0.58

$$P(C = cloud)$$

= $P(C = cloud, R = rain) + P(C = cloud, R = \neg rain)$

$$= 0.08 + 0.32$$

Conditioning

$$P(a) = P(a \mid b)P(b) + P(a \mid \neg b)P(\neg b)$$

Conditioning

$$P(X = x_i) = \sum_{j} P(X = x_i | Y = y_j)P(Y = y_j)$$

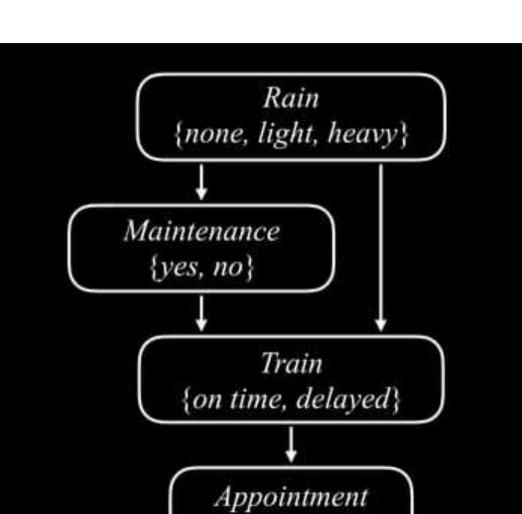
Bayesian Networks

Bayesian network

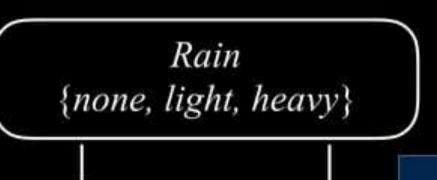
data structure that represents the dependencies among random variables

Bayesian network

- directed graph
- · each node represents a random variable
- arrow from X to Y means X is a parent of Y
- each node X has probability distribution
 P(X | Parents(X))



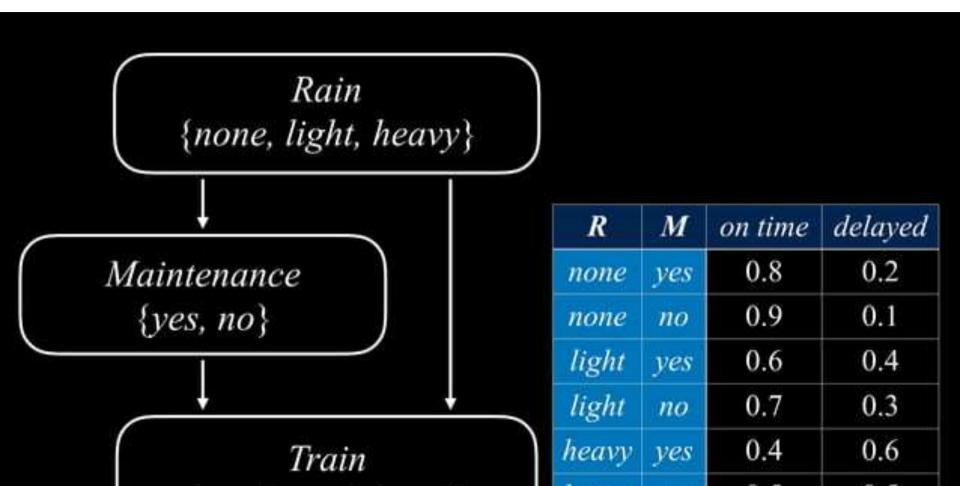
Rain
{none light heavy}

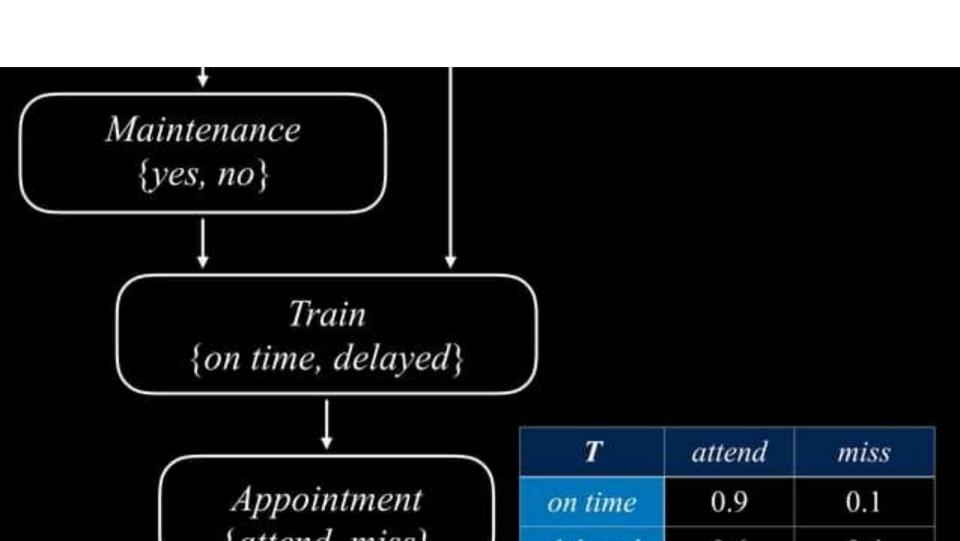


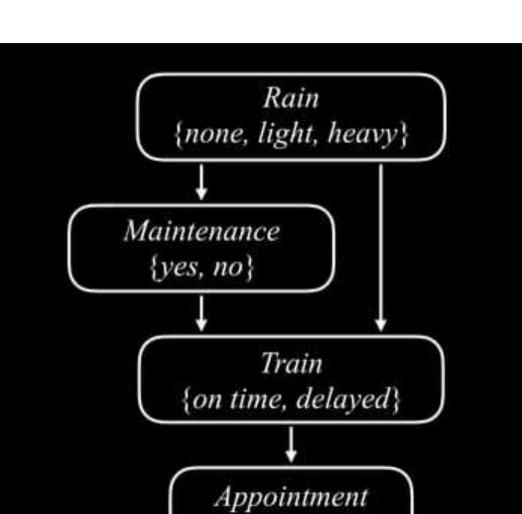
Maintenance

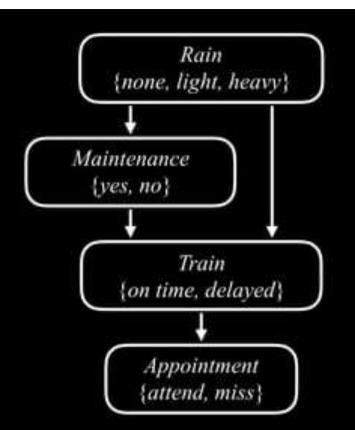
{ves, no}

R	yes	no
none	0.4	0.6
light	0.2	0.8

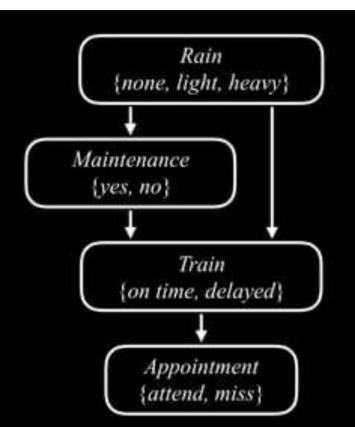




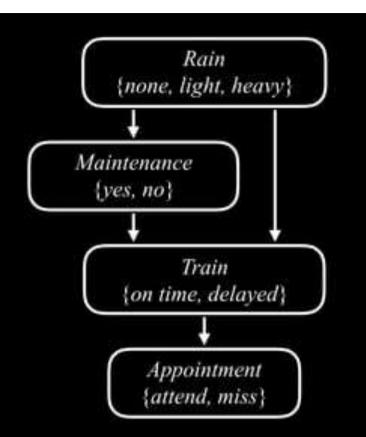




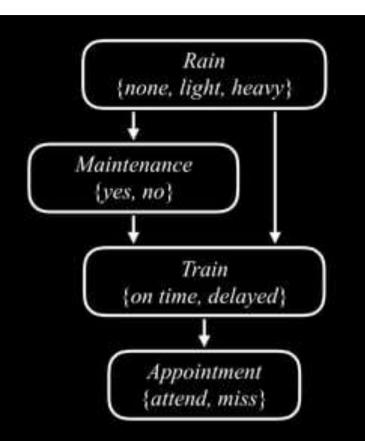
P(light)



P(light, no)



P(light, no, delayed)



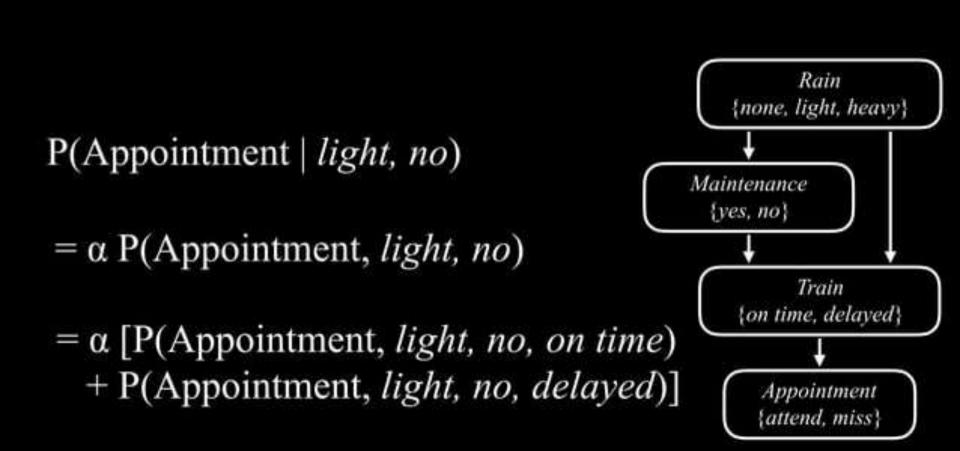
P(light, no, delayed, miss)

Inference

Inference

- Query X: variable for which to compute distribution
- Evidence variables E: observed variables for event e
- Hidden variables Y: non-evidence, non-query variable.

Goal: Calculate P(X | e)



Inference by Enumeration

$$\mathbf{P}(\mathbf{X} \mid \mathbf{e}) = \alpha \ \mathbf{P}(\mathbf{X}, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \ \mathbf{P}(\mathbf{X}, \mathbf{e}, \mathbf{y})$$

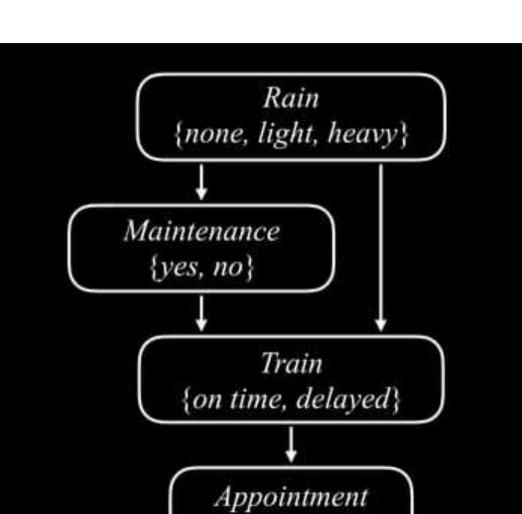
X is the query variable.

e is the evidence.

y ranges over values of hidden variables.

Approximate Inference

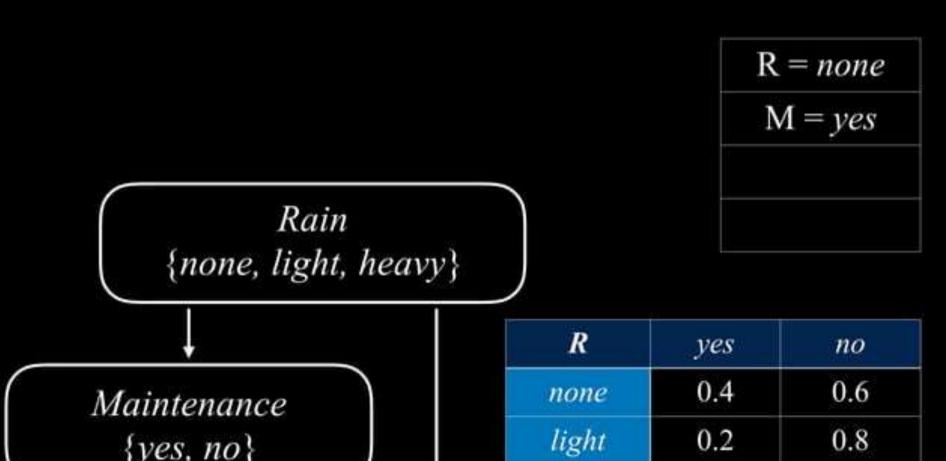
Sampling

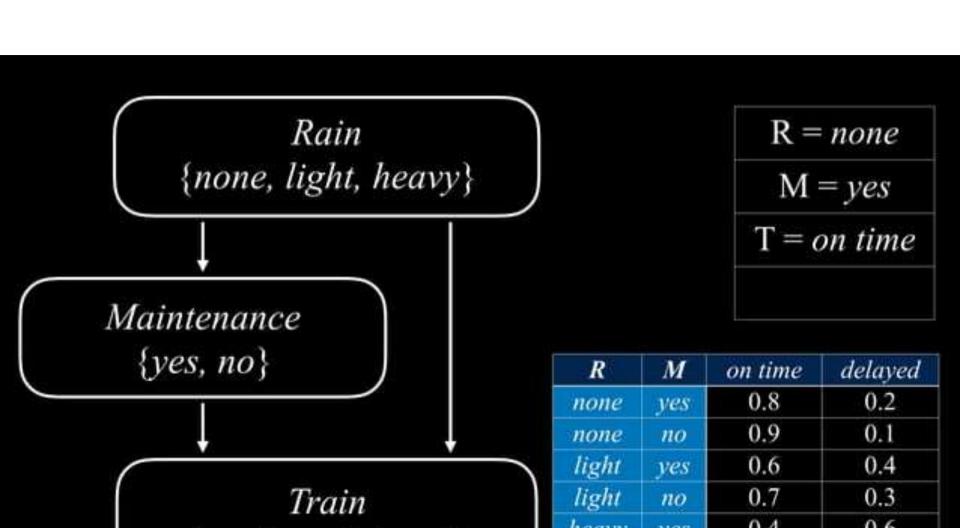


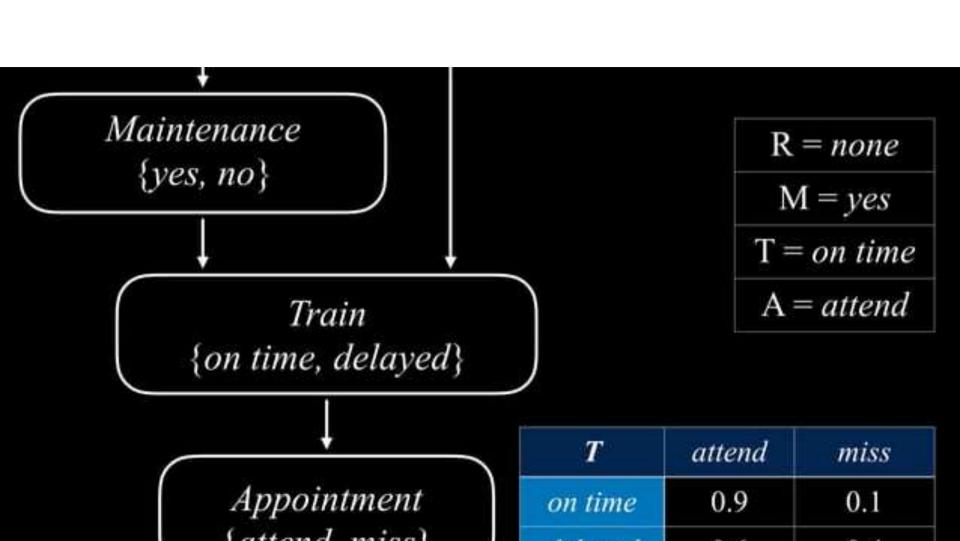
R = none

	Rain
{nor	ne light heavy)

none	light	heavy
0.7	0.2	0.1







	R = none
ľ	M = yes
ľ	T = on time
ľ	A = attend

R = light	R = light	R = none	R = none
M = no	M = yes	M = no	M = yes
T = on time	T = delayed	T = on time	T = on time
A = miss	A = attend	A = attend	A = attend
R = none	R = none	R = heavy	R = light
M = yes	M = yes	M = no	M = no
T = on time	T = on time	T = delayed	T = on time
	A		A

....

of the same

Addition to a

and the same

and the same

$P(Train = on \ time)$?

R = light	R = light	R = none	R = none
M = no	M = yes	M = no	M = yes
T = on time	T = delayed	T = on time	T = on time
A = miss	A = attend	A = attend	A = attend
R = none	R = none	R = heavy	R = light
M = yes	M = yes	M = no	M = no
T = on time	T = on time	T = delayed	T = on time
	A		A

....

of the same

Addition to a

and the same

and the same

R = light	R = light	R = none	R = none
M = no	M = yes	M = no	M = yes
T = on time	T = delayed	T = on time	T = on time
A = miss	A = attend	A = attend	A = attend
D	D.	D 1	
R = none	R = none	R = heavy	R = light
M = yes	K = none $M = yes$	R = heavy M = no	R = light $M = no$

A - with and

P(Rain = light | Train = on time)?

R = light	R = light	R = none	R = none
M = no	M = yes	M = no	M = yes
T = on time	T = delayed	T = on time	T = on time
A = miss	A = attend	A = attend	A = attend
R = none	R = none	R = heavy	R = light
M = yes	M = yes	M = no	M = no
T = on time	T = on time	T = delayed	T = on time
	A		A

....

of the same

Addition to a

and the same

and the same

R = light	R = light	R = none	R = none
M = no	M = yes	M = no	M = yes
T = on time	T = delayed	T = on time	T = on time
A = miss	A = attend	A = attend	A = attend
R = none	R = none	R = heavy	R = light
M = yes	M = yes	M = no	M = no
T = on time	T = on time	T = delayed	T = on time
A	A 1	Α	A

R = light	R = light	R = none	R = none
M = no	M = yes	M = no	M = yes
T = on time	T = delayed	T = on time	T = on time
A = miss	A = attend	A = attend	A = attend
R = none	R = none	R = heavy	R = light
M = yes	M = yes	M = no	M = no
T = on time	T = on time	T = delayed	T = on time
A	A - stand	A	A - without

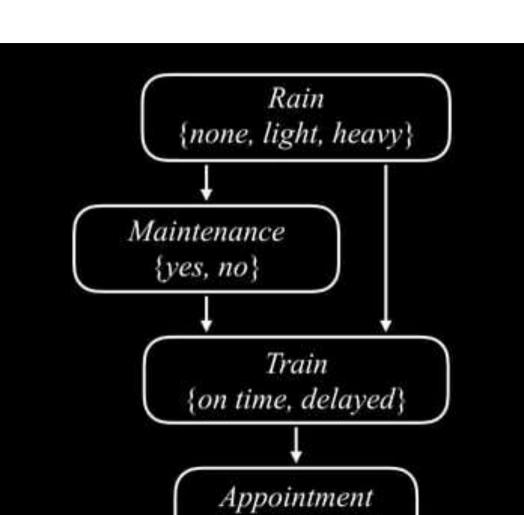
Rejection Sampling

Likelihood Weighting

Likelihood Weighting

- Start by fixing the values for evidence variables.
- Sample the non-evidence variables using conditional probabilities in the Bayesian Network.
- Weight each sample by its likelihood: the probability of all of the evidence.

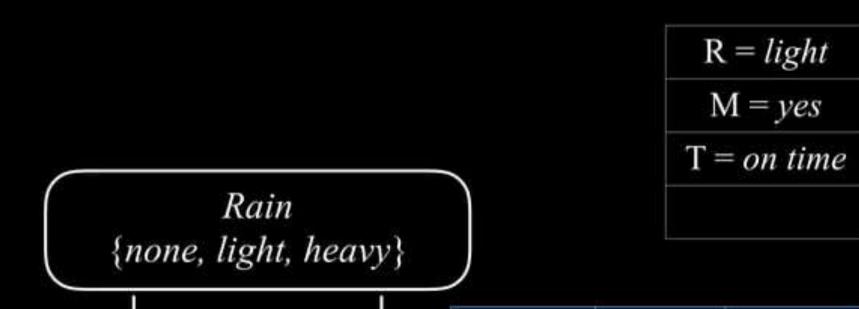
P(Rain = light | Train = on time)?



$$R = light$$
 $T = on time$

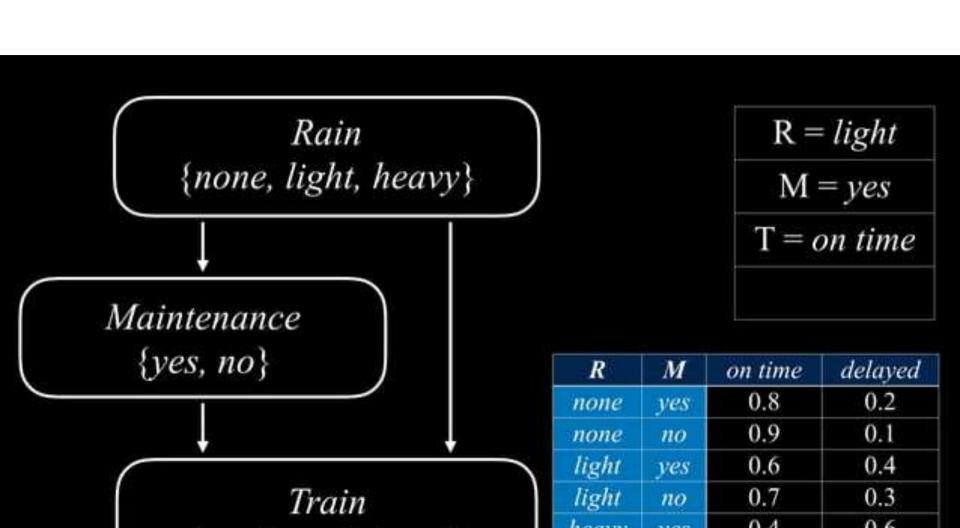
	Rain		
7		7	
mone	liont	heavy}	

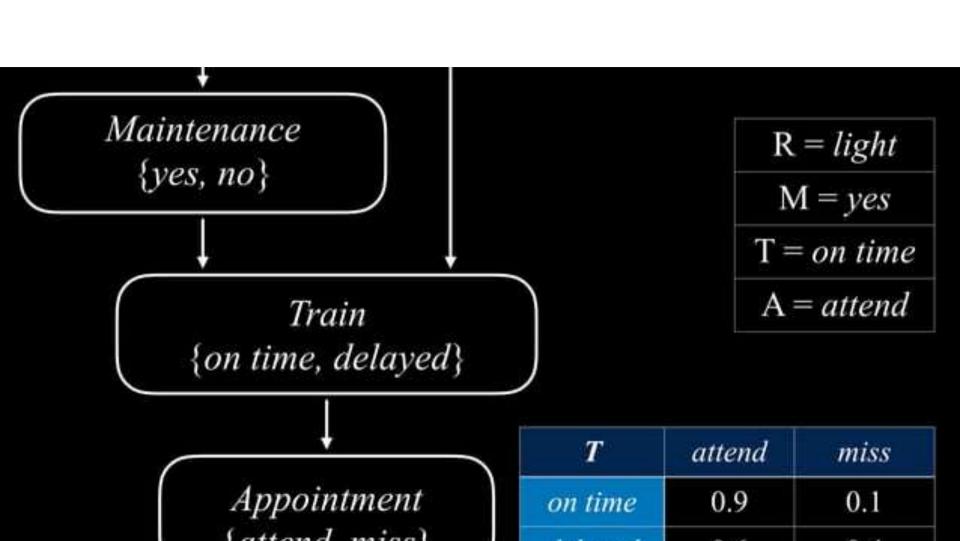
none	light	heavy
0.7	0.2	0.1

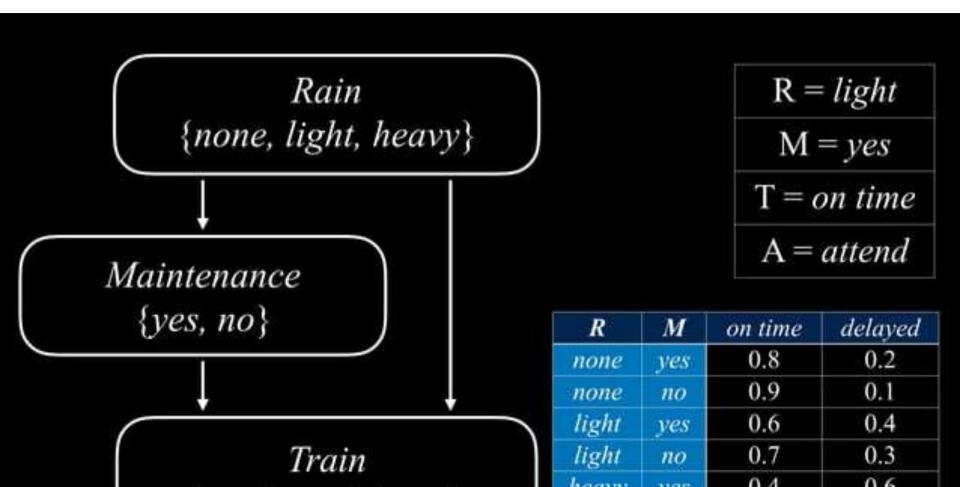


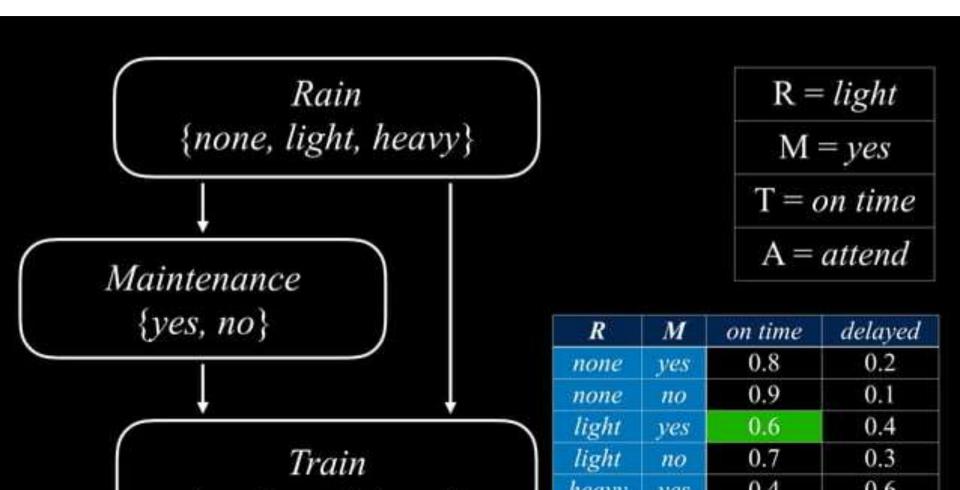
Maintenance)
$\{ves, no\}$	

R	yes	no
none	0.4	0.6
light	0.2	0.8









Uncertainty over Time

Xt: Weather at time t

Markov assumption

the assumption that the current state depends on only a finite fixed number of previous states

Markov Chain

Markov chain

a sequence of random variables where the distribution of each variable follows the Markov assumption

Transition Model

Tomorrow (X_{t+1})

Today (V.)	0.8	0.2
Today (Xt)	0.3	0.7

Sensor Models

Hidden State	Observation		
robot's position	robot's sensor data		
words spoken	audio waveforms		
user engagement	website or app analytics		
weather	umbrella		

Hidden Markov Models

Hidden Markov Model

a Markov model for a system with hidden states that generate some observed event

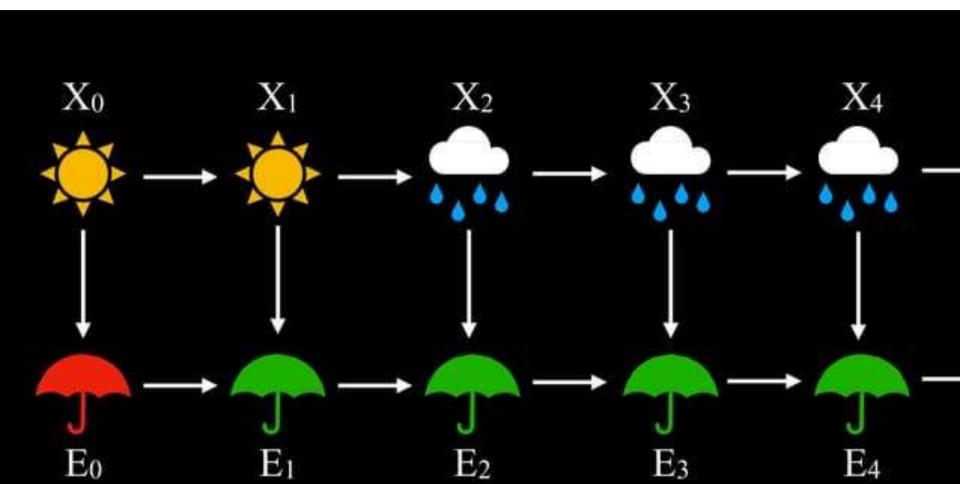
Sensor Model

Observation (Et)

		T	T
State (X _t)	Ó	0.2	0.8
		0.9	0.1

sensor Markov assumption

the assumption that the evidence variable depends only the corresponding state



Task	Definition given observations from start until now, calculate distribution for current state		
filtering			
prediction	given observations from start until now, calculate distribution for a future state		
smoothing	given observations from start until now calculate distribution for past state		
most likely explanation	given observations from start until not calculate most likely sequence of state		