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Outline
• Representing uncertainty is useful in knowledge bases.

– Probability provides a coherent framework for uncertainty

• Review of basic concepts in probability.
– Emphasis on conditional probability and conditional independence

• Full joint distributions are intractable to work with.
– Conditional independence assumptions allow much simpler models

• Bayesian networks are a systematic way to construct:
parsimonious and structured probability distributions

• Rational agents cannot violate probability theory.



You will be expected to know
• Basic probability notation/definitions

– Probability model, unconditional/prior and conditional/posterior probabilities, factored 
representation (= variable/value pairs), random variable, (joint) probability distribution, 
probability density function (pdf), marginal probability, (conditional) independence, 
normalization, etc.

• Basic probability formulae
– Probability axioms, product rule, Bayes’ rule.

• Using Bayes’ rule.

– Naïve Bayes model (naïve Bayes classifier)



Complete architectures for 
intelligence?

• Search?

– Solve the problem of what to do.

• Learning?

– Learn what to do.

• Logic and inference?

– Reason about what to do.

– Encoded knowledge/”expert” systems?

• Know what to do.

• Modern view: It’s complex & multi-faceted.



A (very brief) History of Probability in AI

• Early AI (1950’s and 1960’s)
– Attempts to solve AI problems using probability met with mixed success

• Logical AI (1970’s, 80’s)
– Recognized that working with full probability models is intractable
– Abandoned probabilistic approaches
– Focused on logic-based representations
– Problem: Pure logic is “brittle” when applied to real-world problems.

• Probabilistic AI (1990’s-present)
– Judea Pearl invents Bayesian networks in 1988
– Realization that approximate probability models are tractable and useful
– Development of machine learning techniques to learn such models from data
– Probabilistic techniques now widely used in vision, speech recognition, robotics, language modeling, game-

playing, etc



Uncertainty
Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either
1. risks falsehood: “A25will get me there on time”, or
2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, 
etc., etc.”

“A1440 should get me there on time but I'd have to stay overnight in the airport.”



Methods for handling uncertainty
•Default or nonmonotonic logic:

–Assume my car does not have a flat tire
–Assume A25 works unless contradicted by evidence

•Issues: What assumptions are reasonable? 
How to handle contradictions?

•Rules with fudge factors:
–A25 => 0.3 get there on time

–Sprinkler => 0.99 WetGrass

–WetGrass => 0.7 Rain

•Issues: Problems with combination, e.g., Sprinkler causes Rain??

•Probability
– Model agent's degree of belief
– Given the available evidence,

A25 will get me there on time with probability 0.04



Probability
• Probabilistic assertions summarize effects of

–laziness: failure to enumerate exceptions, qualifications, etc.
–ignorance: lack of relevant facts, initial conditions, etc.

• Subjective probability:
– Probabilities relate propositions to agent's own state of knowledge

• e.g., P(A25 | no reported accidents) = 0.06

• These are not assertions about the world
– They indicate degrees of belief in assertions about the world

• Probabilities of propositions change with new evidence:
– e.g., P(A25 | no reported accidents, 5 a.m.) = 0.15



Making decisions under 
uncertainty

• Suppose I believe the following:
– P(A25  gets me there on time | …) = 0.04 
– P(A90  gets me there on time | …) = 0.70 
– P(A120  gets me there on time | …) = 0.95 
– P(A1440  gets me there on time | …) = 0.9999 

•Which action to choose?
Depends on my preferences for missing flight vs. time spent waiting, etc.
–Utility theory is used to represent and infer preferences
–Decision theory= probability theory + utility theory

• Expected utility of action a in state s
= ∑outcome in Results(s,a)P(outcome) * Utility(outcome)

• A rational agent acts to maximize expected utility



Making decisions under 
uncertainty (Example)

• Suppose I believe the following:
– P(A25  gets me there on time | …) = 0.04 
– P(A90  gets me there on time | …) = 0.70 
– P(A120  gets me there on time | …) = 0.95 
– P(A1440  gets me there on time | …) = 0.9999 
– Utility(on time) = $1,000
– Utility(not on time) = −$10,000

• Expected utility of action a in state s
= ∑outcomeResults(s,a)P(outcome) * Utility(outcome)
– E(Utility(A25)) = 0.04*$1,000 + 0.96*(−$10,000) = −$9,560
– E(Utility(A90)) = 0.7*$1,000 + 0.3*(−$10,000) = −$2,300
– E(Utility(A120)) = 0.95*$1,000 + 0.05*(−$10,000) = $450
– E(Utility(A1440)) = 0.9999*$1,000 + 0.0001*(−$10,000) = $998.90

• Have not yet accounted for disutility of staying overnight at airport, etc.



Syntax
•Basic element: random variable
•Similar to propositional logic: possible worlds defined by assignment of 

values to random variables.

•Boolean random variables
e.g., Cavity (= do I have a cavity?)

•Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

•Domain values must be exhaustive and mutually exclusive

•Elementary proposition is an assignment of a value to a random variable:
e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity)

•Complex propositions formed from elementary propositions and standard 
logical connectives :



Probability
• P(a) is the probability of proposition “a”

– E.g., P(it will rain in London tomorrow)
– The proposition a is actually true or false in the real-world
– P(a) = “prior” or marginal or unconditional probability
– Assumes no other information is available

• Axioms:
– 0  <= P(a)  <= 1
– P(NOT(a))  = 1 – P(a)
– P(true)  =  1
– P(false) =  0
– P(A OR B) = P(A) + P(B) – P(A AND B)

• Any agent that holds degrees of beliefs that contradict these axioms will act sub-optimally in some cases
– e.g., de Finetti proved that there will be some combination of bets that forces such an unhappy agent to lose money every 

time.

• Rational agents cannot violate probability theory.



Probability and Logic
• Probability can be viewed as a generalization of 

propositional logic

• P(a):
– a is any sentence in propositional logic 
– Belief of agent in a is no longer restricted to true, false, 

unknown
– P(a) can range from 0 to 1

• P(a) = 0, and P(a) = 1 are special cases
• So logic can be viewed as a special case of probability



Conditional Probability
• P(a|b) is the conditional probability of proposition a, conditioned on knowing that 

b is true,

– E.g., P(rain in London tomorrow | raining in London today)

– P(a|b) is a “posterior” or conditional probability

– The updated probability that a is true, now that we know b

– P(a|b) = P(a AND b) / P(b)

– Syntax:  P(a | b) is the probability of a given that b is true

• a and b can be any propositional sentences

• e.g., p( John wins OR Mary wins | Bob wins AND Jack loses)

• P(a|b) obeys the same rules as probabilities,

– E.g., P(a | b)  + P(NOT(a) | b) = 1

– All probabilities in effect are conditional probabilities

• E.g., P(a) = P(a | our background knowledge)



Random Variables
• A is a random variable taking values a1, a2, … am

– Events are A= a1, A= a2, ….
– We will focus on discrete random variables

• Mutual exclusion
P(A = ai AND A = aj) = 0

• Exhaustive
S P(ai) = 1

MEE (Mutually Exclusive and Exhaustive) assumption is often useful
(but not always appropriate, e.g., disease-state for a patient)

For finite m, can represent P(A) as a table of m probabilities

For infinite m (e.g., number of tosses before “heads”) we can represent P(A) by a function (e.g., 
geometric)



Joint Distributions
• Consider 2 random variables: A, B

– P(a, b) is shorthand for P(A = a AND B=b)

- Sa Sb P(a, b) = 1

– Can represent P(A, B) as a table of m2 numbers

• Generalize to more than 2 random variables
– E.g., A, B, C, … Z

- Sa Sb… Sz P(a, b, …, z)  = 1

– P(A, B, …. Z) is a table of mK numbers, K = # variables

• This is a potential problem in practice, e.g., m=2, K = 20



Linking Joint and Conditional Probabilities
• Basic fact:

P(a, b) = P(a | b) P(b)

– Why? Probability of a and b occurring is the same as probability of a occurring given b is true, times the 
probability of b occurring

• Bayes rule:
P(a, b) = P(a | b) P(b)

= P(b | a) P(a)   by definition

=> P(b | a) =  P(a | b) P(b)  / P(a)       [Bayes rule]

Why is this useful?

Often much more natural to express knowledge in a particular “direction”, e.g., in the causal direction 

e.g., b = disease, a = symptoms
More natural to encode knowledge as P(a|b) than as P(b|a)



Using Bayes Rule
• Example:

– P(stiff neck | meningitis) = 0.5      (prior knowledge from doctor)

– P(meningitis) = 1/50,000    and    P(stiff neck) = 1/20
(e.g., obtained from large medical data sets)

P(m | s)  = P(s | m)  P(m)  / P(s)
= [ 0.5 * 1/50,000  ] / [1/20]  = 1/5000

So given a stiff neck, and no other information, 
p(meningitis|stiff neck) is pretty small

But note that its 10 times more likely that it was before
- so it might be worth measuring more variables for this patient



More Complex Examples with 
Bayes Rule

• P(a | b, c) = ?? 
= P(b, c | a) P(a)  / P(b,c)

• P(a, b | c, d)  = ??
= P(c, d | a, b) P(a, b)  / P(c, d)

Both are examples of basic pattern p(x|y) = p(y|x)p(x)/p(y)

(it helps to group variables together, e.g., y = (a,b), x = (c, d))

Note also that we can write P(x | y)  is proportional to P(y | x) P(x) 
(the P(y) term on the bottom is just a normalization constant)



Sequential Bayesian Reasoning
• h = hypothesis, e1, e2, .. en = evidence

• P(h)  = prior

• P(h | e1)  proportional to P(e1 | h) P(h)
=  likelihood of e1  x  prior(h)

• P(h | e1, e2)  proportional to P(e1, e2 | h) P(h)
in turn can be written as P(e2| h, e1) P(e1|h) P(h)

~ likelihood of e2 x “prior”(h given e1)

• Bayes rule supports sequential reasoning
– Start with prior P(h)
– New belief (posterior) = P(h | e1)
– This becomes the “new prior”
– Can use this to update to P(h | e1, e2), and so on…..



Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka “summing out” or marginalization)

P(a)  = Sb P(a, b) 

= Sb P(a | b) P(b) where B is any random variable

Why is this useful?

Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any “marginal” probability 
(e.g., P(b)) by summing out the other variables, e.g.,

P(b)  = Sa Sc Sd P(a, b, c, d) 

We can compute any conditional probability given a joint distribution, e.g.,

P(c | b)  = S S P(a, c, d | b) 



Computing with Probabilities:
The Chain Rule or Factoring

We can always write
P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z)

(by definition of joint probability)

Repeatedly applying this idea, we can write
P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities



What does all this have to do with AI?
• Logic-based knowledge representation

– Set of sentences in KB 

– Agent’s belief in any sentence is: true, false, or unknown

• In real-world problems there is uncertainty
– P(snow in New York on January 1) is not 0 or 1 or unknown

– P(vehicle speed > 50 | sensor reading) 

– P(Dow Jones will go down tomorrow | data so far)

– P(pit in square 2,2 | evidence so far)

– Not acknowledging this uncertainty can lead to brittle systems and inefficient use of information

• Uncertainty is due to:
– Things we did not measure (which is always the case)

• E.g., in economic forecasting

– Imperfect knowledge

• P(symptom | disease) -> we are not 100% sure 

– Noisy measurements

• P(speed > 50 | sensor reading > 50)  is not 1



Agents, Probabilities, and Degrees of Belief
• What we were taught in school

– P(a) represents the frequency that event a will happen in repeated trials

– -> “relative frequency” interpretation

• Degree of belief
– P(a) represents an agent’s degree of belief that event a is true

– This is a more general view of probability

• Agent’s probability is based on what information they have

• E.g., based on data or based on a theory

• Examples:
– a = “life exists on another planet”

• What is P(a)?  We will all assign different probabilities

– a = “Hilary Clinton will be the next US president”

• What is P(a)?

– a = “over 50% of the students in this class will get A’s”



More on Degrees of Belief
• Our interpretation of P(a | e) is that it is an agent’s degree of belief in the 

proposition a, given evidence e
– Note that proposition a is true or false in the real-world
– P(a|e) reflects the agent’s uncertainty or ignorance

• The degree of belief interpretation does not mean that we need new or different 
rules for working with probabilities
– The same rules (Bayes rule, law of total probability, probabilities sum to 1) still apply – our 

interpretation is different

• If Agent 1 has inconsistent sets of probabilities (violate axioms of probability 
theory) then there exists a betting strategy that allows Agent 2 to always win in 
bets against Agent 1
– See Section 13.2 in text, de Finetti’s argument



Maximizing expected utility (or minimizing expected cost)
• What action should the agent take?

• A rational agent should maximize expected utility, or equivalently minimize expected cost

• Expected cost of actions:

E[ cost(a) ] =  30 p(c) – 50 [1 – p(c) ]

E[ cost(b) ] =  -100 p(c)  

Break even point?   30p – 50 + 50p = -100p

100p + 30p + 50p = 50

=> p(c) = 50/180 ~ 0.28

If p(c) > 0.28, the optimal decision is to operate

• Original theory from economics, cognitive science (1950’s)

- But widely used in modern AI, e.g., in robotics, vision, game-playing

• Note that we can only make optimal decisions if we know the probabilities



Constructing a Propositional 
Probabilistic Knowledge Base

• Define all variables of interest: A, B, C, … Z

• Define a joint probability table for P(A, B, C, … Z)
– We have seen earlier how this will allow us to compute the answer to any query, p(query | 

evidence),
where query and evidence = any propositional sentence

• 2 major problems:
– Computation time:

• P(a|b) requires summing out over all other variables in the model, e.g., O(mK-1) with K variables

– Model specification
• Joint table has O(mK) entries – where will all the numbers come from?

– These 2 problems effectively halted the use of probability in AI research from the 1960’s up 
until about 1990



Independence
• 2 random variables A and B are independent iff

P(a, b) = P(a) P(b)     for all values a, b

• More intuitive (equivalent) conditional formulation
– A and B are independent iff

P(a | b) = P(a) OR   P(b | a) = P(b),   for all values a, b

– Intuitive interpretation:

P(a | b) = P(a) tells us that knowing b provides no change in our probability for a, i.e., b contains no information about a

• Can generalize to more than 2 random variables

• In practice true independence is very rare
– “butterfly in China” effect

– Weather and dental example in the text

– Conditional independence is much more common and useful  

• Note: independence is an assumption we impose on our model of the world - it does not follow from basic axioms



Conditional Independence
• 2 random variables A and B are conditionally independent given C iff

P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c

• More intuitive (equivalent) conditional formulation

– A and B are conditionally independent given C iff

P(a | b, c) = P(a | c) OR   P(b | a, c) = P(b | c),   for all values a, b, c

– Intuitive interpretation:

P(a | b, c) = P(a | c) tells us that learning about b, given that we already know c, provides no 
change in our probability for a, 

i.e., b contains no information about a beyond what c provides

• Can generalize to more than 2 random variables

– E.g., K different symptom variables X1, X2, … XK, and C = disease



Conditional Independence
vs. Independence

• Conditional independence does not imply independence

• Example:
– A = height
– B = reading ability
– C = age

– P(reading ability | age, height) = P(reading ability | age)
– P(height | reading ability, age) = P(height | age)

• Note:
– Height and reading ability are dependent (not independent)

but are conditionally independent given age



Another Example

Symptom 1

Symptom 2

Different values of C (condition variable)

correspond to different groups/colors

In each group, symptom 1 and symptom 2 are conditionally independent.

But clearly, symptom 1 and 2 are marginally dependent (unconditionally). 



“…probability theory is more fundamentally concerned with 
the structure of reasoning and causation than with numbers.”

Glenn Shafer and Judea Pearl

Introduction to Readings in Uncertain Reasoning,

Morgan Kaufmann, 1990



Conclusions…
• Representing uncertainty is useful in knowledge bases

– Probability provides a coherent framework for uncertainty

• Full joint distributions are intractable to work with

• Conditional independence assumptions allow much simpler models of real-world 
phenomena

• Bayesian networks are a systematic way to construct parsimonious structured 
distributions

• Rational agents cannot violate probability theory.


