

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 – ARTIFICIAL INTELLIGENCE

UNIT IV – UNCERTAIN KOWLEDGE AND REASONING

TOPIC - Semantic Network

Semantic Net

- Form of knowledge representation
- Predicate logic alternative
- Labelled directed graph
- Components:
 - · Nodes object or concept
 - Links relation between nodes.

Semantic Nets

- · isa(person, mammal)
- · instance(Mike Hall, person)
- · team(Mike Hall, Cardiff)

Definitional Networks

 Emphasize the subtype or is-a relation between a concept type and a newly defined subtype.

Assertional Networks

· Designed to assert propositions.

Implicational Networks

 Uses implication as the primary relation for connecting nodes.

Executable Networks

 Contain mechanisms that can cause some change to the network itself.

Learning Networks

 Networks that build or extend their representations by acquiring knowledge from examples.

Hybrid Networks

 Networks that combine two or more of the previous techniques, either in a single network or in separate, but closely interacting networks.

Semantic Relations

- Antonymy A is the opposite of B (Cold is the opposite of warm)
- Holonymy B has A as a part of itself (Bedroom has bed)
- Homonymy A and B, are expressed by the same symbol. (Both a financial institution and a edge of a river are expressed by the word bank)
- Hypernymy A is the superordinate of B. A is the general kind of B(Animal is a hypernym of dog)
- Hyponymy or troponomy A is a subordinate of B. A is a specific kind or instance of B (Dog is a hyponym of animal)
- Meronymy A is part of B (Engine is part of car)
- Synonymy A denotes the same as B (Happy is synonym of blissful)

Common Semantic Relations

- There is no standard set of relations for semantic networks, but the following relations are very common:
- INSTANCE: X is an INSTANCE of Y if X is a specific example of the general concept Y.
- Example: Elvis is an INSTANCE of Human
- ISA: X ISA Y if X is a subset of the more general concept Y.
- Example: sparrow ISA bird
- HASPART: X HASPART Y if the concept Y is a part of the concept X. (Or this can be any other property)
- Example: sparrow HASPART tail

Inheritance

- A key concept in semantic networks and can be represented naturally by following ISA links.
- In general, if concept X has property P, then all concepts that are a subset of X should also have property P.

Common Semantic Relations

- There is no standard set of relations for semantic networks, but the following relations are very common:
- INSTANCE: X is an INSTANCE of Y if X is a specific example of the general concept Y.
- Example: Elvis is an INSTANCE of Human
- ISA: X ISA Y if X is a subset of the more general concept Y.
- Example: sparrow ISA bird
- HASPART: X HASPART Y if the concept Y is a part of the concept X. (Or this can be any other property)
- Example: sparrow HASPART tail

Converting to Semantic Net

Example

· Bill is taller than John.

nodes represent object, and arcs represent relationships between those objects

Steps

- · Draw Relations on the basic of primitives
- · Represent Complicated Relations with this primitives.

Reification

- reify v : consider an abstract concept to be real
- Non-binary relationships can be represented by "turning the relationship into an object"
- Example: a giver, a recipient and an object, give(john,mary,book32)

EXAMPLE

- · Tom is a cat.
- · Tom caught a bird.
- · Tom is owned by John.
- · Tom is ginger in colour.
- · Cats like cream.
- The cat sat on the mat.
- A cat is a mammal.
- · A bird is an animal.
- · All mammals are animals.
- · Mammals have fur.

Disadvantages of using Semantic Nets

Disadvantages

- There is no standard definition of link names
- Semantic Nets are not intelligent, dependent on creator
- Links are not all alike in function or form, confusion in links that asserts relationships and structural links.
- Undistinguished nodes that represent classes and that represent individual objects.
- Links on objects represent only binary relations.
- Negation, disjunction and general non-taxonomic knowledge are not easily expressed.

Advantages of using Semantic Nets

Advantages

- Natural
- Modular
- Efficient
- · Convey meaning in a transparent manner
- Simple
- Understandable
- Translatable to PROLOG w/o difficulty

THANK YOU