- SNS COLLEGE OF TECHNOLOGY JE

Coimbatore-35
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 — ARTIFICIAL INTELLIGENCE
' YEAR IV SEM

UNIT IV — UNCERTAIN KOWLEDGE AND REASONING

ToPIC- Temporal Model

ol
m

Formal methods: Why?

REAL DEVELOPMENT

IDEAL DEVELOPMENT

— Specification + AErrors

!
Design
I
Coding
!’

> Testing

l
+ AErrors
b
+ ABugs
Ll

Limited Coverage

d

with safety issues-

Formal methods: Where?

Life Critical Mission Critical
Medical Devices Industrial Control Space Vehicles
Therac-25 Slammer Worm Ariane-5

at Davis-Besse Plant

* An Investigation of Therac-25 Accidents [Leveson, Turner, 93]
* Ariane 5 Flight 501 Failure, Report by Inquiry Board [Lions, 96]

+ Slammer worm crashed Ohio nuke plant network, News Report
[http://www.securityfocus.com/news/6767, 03]

§g§ -
.

Sentences (Syntax) and Models
(Semantics)

~ ®“Every PhD student must have an advisor who is a

member of faculty”
® F = Vx- phd-student(x) = 3y - advisor-of(y, X) A faculty(y)

® What does F mean?
Classical Interpretation - A mathematical structure with:
advisor-of mapped to a binary relation on the structure
phd-student, faculty mapped to unary relations
Logical symbols (A, =) have fixed interpretation
Quantifiers (V,3) range over elements of the underlying set

® Model of F = a satisfying interpretation for F

WD

Fundamental reasoning tasks

® M satisfies F ? Model checking problem
®7? satisfies F Satisfiability problem

® * satisfies F Validity problem
®{fa:M|=F(a)} Formula (query) evaluation

Note: |= denotes satisfies relation

Modal Logic

® Modalities: Necessity, knowledge, belief,
obligation, tense
Symbolic Logic [Lewis,32]

® Possible World Semantics
Kripke Structure

® Temporal Logic
Time and Modality [Prior,57]
- Temporal modalities: always (0J), eventually (*)

Possible Worlds & Kripke Structure
for a washing machine

Kripke Structure = (States, —,
L)
L : States — 2AP

‘Accessibility Relation: { > }

idle > inlet-open

‘ A A

alarm < —
A washing

\'4

spinning v

outlet-open | outlet-open <

e alarm

O—(spinning A washing)
[J —(inlet-open A outlet-open)

Verification: Sequential Programs

2 program statement

Hoare triple: gp} S {C'%}

precondition postcondition - Using some predicate logic

Assigning Meanings to Programs [Floyd,67]
An Axiomatic basis for Computer
Programming [Hoare, CACM69] (Hoare Logic)

- Guarded commands, non-determinism and

formal derivation of programs [Dijstra,75]
(GCL)

Hoare Logic

~— (Assignment Axiom)

- {Q[E/id]} id=E; {Q}
(Conditional Rule)

{PAE} s, {Q} {P~—E} s, {Q}
{P} if (E) {s,} else {s,} {Q}
(Sequencing Rule)

{P}s, R} {R}s,{Q}
{P}s, g, {Q}
(Pre-strengthening, Post-weakening)
P=P {P}s {Q} a=Q
{P} s {Q}

Proof Tableaux

|
p— W

Hoare Logic Example

=if(x>y)thenz:=xelsez =y

® Prove that: {true} P {z = max(x,y)}

{true}
{true} <if (x > y) then- {x > y} X >y = X = max(x,y)
{x=max(xy)} < z:=x {z = max(x,y)}
else {=(x>y)} X<y =y=max(xy)
{y=max(xy)} © Z=Y {z = max(x,y)}

{z = max(x,y)}

Concurrency

® Simple pre-condition/post-condition
assertions insufficient
Deadlocks, Data races, Starvation!

> Need a language for expressing concurrency
properties

® Cannot ignore intermediate steps!

P ; Q : Intermediate states of P & Q do not
Interleave/interact

> P || Q : Intermediate states interleave/interact
(in exponential number of ways)

.« Specifying properties of concurrent
systems

® Language: Temporal Logic
The Temporal Logic of Programs [Pnueli,77] (Linear Temporal Logic)

® Safety
- something bad will never happen:
> O —(spinning A washing)

®Liveness
- Something good will eventually happen:
e alarm

® Fairness

- Always something good will eventually happen
- Oeidle

Why Temporal Logics?

Computational Modal arid
System Temporal
Logicsﬂ
Operational
Semantics / models of

~

Labelled Transition System
(Kripke Structure)

[Stirling03] http://www.fing.edu.uy/inco/eventos/wssa/

g 3
2

 Producer
witp: while (lisempty);
csp: buf = produce();
fiIp :isempty = false;

Producer-Consumer with 1-buffer

Consumer

wic: while (isempty);
csc: consume(buf);
flc :isempty = true;

State space for 1-buffer
system

< States = control state X data state
={wip,csp,fip} x {wic,csc,flc} x {da} x {em}

wt : wait
cs : critical section
fl :flag update
da : buf has data available
em :isempty is true
e.g., (wip, csc, ,em) € States

LTS for 1-buffer system

| > wip, wic, ,.em <
v

ﬁ > ¢sp, wic,da,em
Vv

> fip, w_tc, da,

< -

wip, wic,da, flp, csc,

Vv _,.-—“'_.
wip, csc, , &
|

Vv
wip, flc, em <

i T
csp, ﬂc:da.em

|

=
flp, ﬂg, .em

> fip, wic, .em

~—a
fip, ﬂr_:,da,
> wip, flc,da,

§Q§ -
.

Temporal Properties for 1-buffer syste;”‘ri"*‘i:

® Safety: [0 —(cSp A €Sc)
> Producer and Consumer will never be in the CS
at the same time

®Liveness: ® (da A —-em)

- Eventually data will become available and empty
flag reset

® Fairness: [le csp
- Producer is always given a fair chance to produce

Model Checking

® Model checking: M |= F?

® Design & Synthesis of synchronization skeletons
using branching temporal logic [Clarke &Emerson,
81]

® Specification & Verification of Concurrent Systems in
Cesar [Queille & Sifakis, 82]

® Automatic Verification of Finite-State Concurrent
Systems using Temporal Logic Specifications
[Clarke, Emerson, Sistla, TOPLASS86]

WD

Computations of LTS

- ® Unfold LTS — Infinite tree of

computations
- Interleaved Semantics
= Concurrency as non-determinism

® View of computations: Linear vs
Branching
> Linear Temporal Logic
- Computational Tree Logic

Computational Tree Logic

® Path quantifier
A: All paths (inevitably)
E: there EXxists a path (possibly)

® Temporal operator
X: neXt state
- F: some Future state (eventually)
- G: Globally; all future states
U: Until

®e.g., AF: for all paths eventually, EG: for some path
globally

CTL semantics

®=p O= “p.
s sO
o 7
- v L .
M,s0 |= AG p OV M,sO |=AF p
S

MR ERP [Clarke, Emerson, Sistla, TOPLASSE

....

CTL examples

,

It is possible to get to a state where started holds. but ready doesn’t:

1 EF (started A —ready).

For any state, if a request (of some resource) oceurs, then it will eventually be
acknowledged:
AG (requested — AF acknowledged).

From any state it is possible to get to a restart state:
AG (EF restart).

A certain process is enabled infinitely often on every computation path:

AG (AF enabled).

The lift can remain idle on the third floor with its doors closed:
AG (floor3 2 idle A doorclosed — EG (floor3 2 idle A doorclosed)).

Logic in Computer Science [Huth, Ryan, 04]

u 3

Computational Tree Logic

®0::= TI|F]|p

=0 | oA [OV | 90—
AXbd|EXd

AF ¢ | EF ¢

AG ¢ | EG ¢

AloUo¢]| E[oU o]

A: inevitably (along all paths)

E : possibly (there exists a path)

G: globally (always), F: in future (eventually)
X: neXt state, U: until

WD

Model Checking

°*M |= F?
® SAT(M, 6) : 2S
- INPUT:
CTL model M = (S, —, L)
CTL formula ¢

« OUTPUT:
Set of states (< S)that satisfy ¢

- Complexity: O(f . |S] . (|S] + |—=]))
Logic in Computer Science [Huth, Ryan,
04]

- SAT: Conjunction &
Inevitabllity

G = G
G = G
O -~ O

........

SAT(0) : 2S

begin

case(o)

T creturn S

1l return @
-y return S — SAT(vy)
d1A02 : return SAT(d1) N SAT(¢2)
d1vo2 : return SAT(d1) U SAT(¢p2)
H1=02 : return SAT(—01vd2)

SAT (case(¢) cont.d)

ARy : SATAF(y)
E[01U02] : SATEU(d1,02)
end case
end

SATAF(0)

begin
Y = J;
repeat
X =Y,
Y :=10,Y);
until X =Y
end

function f(¢,Y)
begin
If Y =0 then

return SAT(¢)
else
return Y u
preV(Y)
end

Fixpoint characterization

® Consider, F: 2S5 — 2S

® Formula are identified with their characteristic set
e.g. ¢ denotes set of all states where ¢ is true

® Subsets of S (e 2S) form complete lattice
Partial order: c, Join: U, Meet: N

® Knaster-Tarski theorem

“Monotone functions on a complete lattice possess least
and greatest fixpoints”: A lattice-theoretical fixpoint
theorem and its applications [Tarski,55]

u 3

Fixpoint characterization: Eventually,**
Until

*EFp=pnZ. ¢ vEXZ

® AFp =puZ. o vAX Z

® E[y1Uy2] = uZ. w2 v (y1 A EX 2)

® Aly1Uy2] = uZ. w2 v (y1 A AX Z)

Twa
“&Q 5

Fixpoint characterization: globally

® AGh) = VZ.0AAX Z

® EGd = VZ.OAEX Z

LTL Model checking

® The complexity of propositional linear
temporal logics [Sistla, Clarke, 85]

® Checking that finite state concurrent programs
satisfy their linear specification, [Lichtenstein,
Pnueli, POPL85]

® An automata-theoretic approach to automatic
program verification [Vardi, Wolper, 86]
LTL to Buchi Automata

State explosion

® The state explosion problem [Clarke, Grumberg, 87]
- Number of concurrent processes
Number of variables
® Partial-order reduction
An Introduction to Trace Theory [Mazurkiewicz,95]

® Symbolic Model Checking: 1020 states and beyond
[Burch, Clarke, McMillan, Dill, Hwang, 92]

OBDD: Ordered Binary Decision Diagrams [Bryant,86]
w-Calculus: Finiteness is u-ineffable [Park,74]

® Abstraction
® Combining theorem-proving & model checking
® On-the-fly model checking

u 5

Some Tools

® SPIN/Promela
> http://spinroot.com

® Java Pathfinder
- http://javapathfinder.sourceforge.net/

® NuSMV
o http://nusmuv.irst.itc.it/

u =

Thank You

Have a great day!

