SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY
19CSE303 — ARTIFICIAL INTELLIGENCE

Il YEAR IV SEM
UNIT V — LEARNING

TOPIC : Reinforcement Learning

Outline

®[ntroduction

®"Element of reinforcement learning
m=Reinforcement Learning Problem
"Problem solving methods for RL

Introduction

Machine learning: Definition

- Machine learning is a scientific discipline that is
concerned with the design and development of
algorithms that allow computers to learn based on
data, such as from sensor data or databases.

A major focus of machine learning research is to
automatically learn to recognize complex patterns and
make intelligent decisions based on data .

*Machine learning Type:

With respect to the feedback type to learner:

< Supervised learning : Task Driven (Classification)

- Unsupervised learning : Data Driven (Clustering)

- Reinforcement learning —

Close to human learning.

Algorithm learns a policy of how to act in a given
environment.

Every action has some impact in the environment,
and the environment provides rewards that guides
the learning algorithm.

Supervised Learning Vs

Reinforcement Learning

Supervised Learning
= Step: 1

Teacher: Does picture 1 show a car or a flower?
Learner: A flower.
Teacher: No, it’s a car.

Step: 2
Teacher: Does picture 2 show a car or a flower?
Learner: A car.
Teacher: Yes, it’s a car.

Step: 3

Supervised Learning Vs

Reinforcement Learning (Cont...)

Reinforcement Learning

Step: 1
World: You are in state 9. Choose action A or C.
Learner: Action A.
World: Your reward is 100.

Step: 2
World: You are in state 32. Choose action B or E.
Learner: Action B.
World: Your reward i1s 50.

Step: 3

#® Introduction (Cont..)

“ Meaning of Reinforcement: Occurrence of an
event, in the proper relation to a response, that tends to
increase the probability that the response will occur
again in the same situation.

Reinforcement learning is the problem faced by an
agent that learns behavior through trial-and-error
interactions with a dynamic environment.

< Reinforcement Learning is learning how to act in
order to maximize a numerical reward.

® |
" Introduction (Cont..)

* Reinforcement learning is not a type of neural
network, nor is it an alternative to neural networks.
Rather, it is an orthogonal approach for Learning
Machine.

* Reinforcement learning emphasizes learning feedback
that evaluates the learner's performance without
providing standards of correctness in the form
of behavioral targets.

Example: Bicycle learning

-?Element of reinforcement learning

| Agent I Policy

State Reward 7

Action

Environment

- Agent: Intelligent programs
- Environment: External condition
- Policy:
~Defines the agent’s behavior at a given time

<A mapping from states to actions
“Lookup tables or simple function

Element of reinforcement learning

“ Reward function :
- Defines the goal in an RL problem
- Policy is altered to achieve this goal
“ Value function:

- Reward function indicates what i1s good in an immediate
sense while a value function specifies what is good in
the long run.

- Value of a state is the total amount of reward an agent can expect
to accumulate over the future, starting form that state.

“ Model of the environment :

- Predict mimic behavior of environment,

- Used for planning & if Know current state and action
then predict the resultant next state and next reward.

10

":??Agent- Environment Interface

.I Agent :

s1ate reward action

R) r “,

.
L Y

5 s.. | Environment]*—

-

Agent and environment interact at discrete ime steps @ =01 2 ...
Agent observes state atstep 7: 5, €S
produces action at step 7: a, € A(s)
gets resulting reward @ 7, €N
and resulting next state @ s

r+1

- .. o r”l r"': - . -
% % 41 @ .2 G .3

11

|

Steps for Reinforcement Learning

The agent observes an input state

An action is determined by a decision making
function (policy)

The action is performed

The agent receives a scalar reward or reinforcement
from the environment

Information about the reward given for that state /
action pair is recorded

12

Silent Features of Reinforcement
Learning :

= Set of problems rather than a set of techniques
= Without specifying how the task is to be achieved.

= “RL as a tool” point of view:
= RL is training by rewards and punishments.
< Train tool for the computer learning.

* The learning agent’s point of view:
= RL 1s learning from trial and error with the world.
<4 Eg. how much reward I much get if I get this.

13

#Reinforcement [Learning (Cont..)

= Reinforcement Learning uses Evaluative Feedback

= Purely Evaluative Feedback
< Indicates how good the action taken is.
- Not tell if it 1s the best or the worst action possible.
- Basis of methods for function optimization.

“ Purely Instructive Feedback

= Indicates the correct action to take, independently of
the action actually taken.

<4 Eg: Supervised Learning

= Associative and Non Associative:

14

* Associative & Non Associative Tasks

= Associative :
< Situation Dependent

<4 Mapping from situation to the actions that are best in that
situation

= Non Associative:
< Situation independent

< No need for associating different action with different
situations.

< Learner either tries to find a single best action when the task
is stationary, or tries to track the best action as it changes
over time when the task is non stationary.

15

#R cinforcement LLearning (Cont..)

Exploration and exploitation

Greedy action: Action chosen with greatest estimated
value.

Greedy action: a case of Exploitation.

Non greedy action: a case of Exploration, as it
enables us to improve estimate the non-greedy
action's value.

#“ N-armed bandit Problem:
We have to choose from n different options or actions.
We will choose the one with maximum reward.

16

® B.andits Problem

One-Bandit
“arms”

Pull arms sequentially so as to maximize the total
expected reward

It is non associative and evaluative

‘?"‘Action Selection Policies

Greediest action - action with the highest estimated

reward.

e -greedy
- Most of the time the greediest action is chosen
- Every once in a while with a small probability €, an

action is selected at random. The action is selected
uniformly, independent of the action-value estimates.

e -soft - The best action is selected with probability (1
—e) and the rest of the time a random action is chosen
uniformly.

18

jé’S—Greedy Action Selection Method :

Let the a* i1s the greedy action at time t and Q, (a) i1s the
value of action a at time.

Greedy Action Selection:

a, = a, =arg max O,(a)
o

= & —greedy
a, with probability l—e

a =

{ random action with probabilitye

19

* Action Selection Policies (Cont...)

“ Softmax —

O

Drawback of € -greedy & € -soft: Select random
actions uniformly.

Softmax remedies this by:

= Assigning a weight with each actions, according
to their action-value estimate.

“ A random action is selected with regards to the
weight associated with each action

“ The worst actions are unlikely to be chosen.

“ This 1s a good approach to take where the worst
actions are very unfavorable.

Softmax Action Selection(Cont...)

“ Problem with e-greedy: Neglects action values
= Softmax idea: grade action probs. by estimated values.

“ Gibbs, or Boltzmann action selection, or exponential

weights: Qela)/7

;',, (Q'(bj/T
=1

T 1s the ““computational temperature™

At T = 0 the Softmax action selection method become
the same as greedy action selection.

21

#Incremental Implementation

Sample average:
ry g -tcc-=rg.

Ma

Ql(") —y

Incremental computation:

Quay = Q+ - :

lrasg =€
h‘i]r :)‘I

Common update rule form:
NewEstimate = OldEstimate + StepSize| Target —
OldEstimate)]

The expression [Target - Old Estimate] is an error in the
estimate.

It is reduce by taking a step toward the target.

In proceeding the ﬁt-*—l)st reward for action a the step-size
parameter will be 1\(t+1).

#Some terms in Reinforcement Learning#*

“ The Agent Learns a Policy:

= Policy at step t, = a mapping from states to action
probabilities will be:

T, (s,a) = probability that @, = a when s, = §

-4 Agents changes their policy with Experience.

= Objective: get as much reward as possible over a
long run.

= Goals and Rewards

= A goal should specify what we want to achieve, not
how we want to achieve it.

#Some terms in RL (Cont...)

= Returns
<4 Rewards in long term

- Episodes: Subsequence of interaction between agent-

environment e.g., plays of a game, trips through a
maze.

= Discount return
< The geometrically discounted model of return:

™~

Ry = vy + Yre42 + ’2"r+:z e Z ¥ k"r-:.-k-f»l-
=1
- Used to: where 7.0 < -~ < 1. 1s the discount rate
= To determine the present value of the future
rewards

= Give more weight to earlier rewards

24

% The Markov Property

= Environment's response at (t+1) depends only on State
(s) & Action (a) at t,

Pris., =s"r,=r|s.q
Markov Decision Processes
=2 Finite MDP
= Transition Probabilities:

Pl = Pr{sip1=38"| se=s,a,=a} for all §,3' € S, a € A().

= pXpectea Keward

R, =FE{riy | si=s.a,=a,s,,, ="'} forall 5.s' &= S, a & A(s).

Transition Graph: Summarize dynamics of finite MDP.

#v\/alue function

= States-action pairs function that estimate how good it is
for the agent to be in a given state

= Type of value function

- State-Value function

3 The value of a state i1s the expected return starting from
that state; depends on the agent’'s policy:

State-value function for policy -t :

V() = Ex{Relse=s} = E{ 3 v*resnss | se=s}

Fo==)

< Action-Value function

3 The value of taking an action in a state under policy v

is the expected return starting from that state. taking that
action, and thereafter following s :

Action-value function for policy ot ©

QF(s.a) = F,{Ri|s¢e=s,a; = a} = E..,-{Z: o restesr | Se=%,a, -=-u} =
ool

’ig‘“’Backup Diagrams

= Basis of the update or backup operations

= backup diagrams to provide graphical summaries of
the algorithms. (State value & Action value function)

Backup diagrams:

- Noor
<o |
»_/;' "'__ /’.\

= % e N
q/ ~ 7 u_f;/ \‘?73\'
VAT A /\' % N\ /N
o O 'S i T - - -
for Vv~ for Q7

Bellman Equation for a Policy 77

. \‘?"s’.c;)\,‘t“. -R',’..""’(-"E
Vs = L Ear: v | }

*Model-free and Model-based [Learning

“ Model-based learning

< Learn from the model instead of interacting with the world
< Can visit arbitrary parts of the model

< Also called indirect methods

< E.g. Dynamic Programming

= Model-free learning

<4 Sample Reward and transition function by interacting with
the world

- Also called direct methods

* Problem Solving Methods for RL

» Dynamic programming
Monte Carlo methods
. Temporal-difference learning.

® Dynamic programming

= (Classical solution method

= Require a complete and accurate model of the
environment.

= Popular method for Dynamic programming

- Policy Evaluation : Iterative computation of the value
function for a given policy (prediction Problem)

= Policy Improvement: Computation of improved policy
for a given value function.

V(Sl) = E.rr{rln + yV(‘?l)}

- Dynamic Programming

V(s,) = Eglrin +7V ()]

S
@

31

Policy Evaluation

Policy Evaluation: for a given policy s, compute the
state-value function V~

Recall: State - value function for policyxr:

PP PR g P
. i)

Bellman equation for V" :
Vi) = 3 a(s.@) > PafRe+ y V()]

Iterative Methods

Vo= Wy ree i W By o reemm W

a “sweep”)

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

Vi (8) o= E Jt(s,a)ZPL‘,{Rf,’s.-ﬁ- YV, (S')]

33

L
.Q“-

Iterative Policy Evaluation

Input 7r, the policy to be evaluated
Initialize V(s) = 0, for all s € &
Repeat
A—0
For each s € &::
v — V(s)
V(S) (/a Za 7!'(3, a‘) 23' Psas' [Rgs' + ’)‘V(S')]
A «— max(A, |v — V(s)])
until A < @ (a small positive number)
Output V =~ V7™

NewEstimate = OldEstimate + StepSize| Target — OldEstimate)

34

Policy Improvement

Suppose we have computed V7 for a deterministic policy 7.

For a given state s,
would it be better to do an action @ = 7(5)?

The value of doing « in state s is:
Q" (s.a) =E, {l;*, +yV7(s,,,)IS, = 5,4, =a}

= 277,'.',.[72.‘.‘..'+ Yy Vs’)]

It is better to switch to action a« for state sif and only if
O (s,a) > V7 (s)

Computation of improved policy for a given value function

35

“ Policy Evaluation and Policy improvement
together leads

“ Policy Iteration
“ Value Iteration:

-Q‘ Policy Iteration : Alternates policy evaluation and policy
improvement steps

e

policy evaluation

T, SERgE ==y

policy improvement

¢ K

“greedification™
1. Imnitiaalizaaticorn
Vi(s) & N awamncd 77(s) € _A(s) awrbitrarily for all s & S
2. Policy IEvaduaaatiaon
IReproeat
L «— O
For each s & S:
v — V(=)
Vi(s) — S".. IS [RIS? + >y visn)]
D +— snax(A., | V(=)
trnatil AN = @ (s sraiaddl prositives anmarnlser)
3. PFPolicy Irnprrovaeanioat
prerlvc-py—=tlerdrle: ~—— Ly ere-
IFor canach = & S
i 7 ()
— T s) — nurs maanx, > _ ., L., [R-:-' -+ >V (=7)
If O 5 (=), thieny ppoliciy—sterlbile: «~—— [erl se-
VY ygocrlicay-steaxbdrle, thlicman Staopr»: o lsoe gzar Lo 2

Value Iteration

- Combines evaluation and improvement in one update

Recall the full policy-evaluation backup:

Vier () == 3 0(s,@) P Rewt v Vi(s")]

Here is the full value-iteration backup:

Viwr (8) <= max PP Rit yVi(s)]

IR

. 3
=

Value Iteration:

Combines evaluation and improvement in one update

Initialize V' arbitrarily. e.g..V(s) = 0. for all s € §*

Repeat
A —0
For each s € &:
v +— V(s)

V(s) «— max, >__, Po.[RS:,, + vV (s')]
A +— max(A, |v — V(s)])
until A < € (a small positive number)

Output a deterministic policy, 77, such that
w(s) = arg max, > __, P2, [Gy + ‘}'\f’(s’)]

39

*Generalized Policy Iteration (GPI)

Consist of two iteration process,
= Policy Evaluation :Making the value function

consistent with the current policy
= Policy Improvement: Making the policy greedy
with respect to the current value function

evaluation
" _.‘»ﬂ
A geometric metaphor for
convergence of GPI:
t—=greoedy{ V'
Improvement

-
- stariing
- VvV ox

i<
L

40

®
3

Monte Carlo Methods

= Features of Monte Carlo Methods

Q

-

No need of Complete knowledge of environment

Based on averaging sample returns observed after visit
to that state.

Experience is divided into Episodes

Only after completing an episode, value estimates and
policies are changed.

Don't require a model
Not suited for step-by-step incremental computation

41

®MC and DP Methods

= Compute same value function
= Same step as in DP
< Policy evaluation

< Computation of Vi and Qn for a fixed arbitrary
policy (IT).

= Policy Improvement
< Generalized Policy Iteration

42

®To find value of a State

= Estimate by experience, average the returns observed
after visit to that state.

= More the return, more is the average converge to
expected value

Monte Carlo Policy Evaluation

IRIRN

9

Creread: learn V7% y)
Cirvern: some number of episodes under or which contain &
fedeva: Average returns obscerved affer visits to s

..\ » .
(1 &®2) -3 -3 S
Loveryv-Visi MO average returns {or overy time § is visited
m an epaisode

Firsr—vixir A average returns only for firsr time § i1s
visited in an episode

43

#First-visit Monte Carlo Policy evaluati

Initialize:
7 «— policy to be evaluated
V «— an arbitrary state-value function
Returns(s) «— an empty list, for all s € S

Repeat forever:
(a) Generate an episode using
(b) For each state s appearing in the episode:
R «— return following the first occurrence of s
Append R to Returns(s)
V' (s) « average(Returns(s))

S

Backup diagram for Monte Carlo

Entire episodoe included

d iy

Only one choice at cach state
(unlike D)

J

MC doces not bootswrap

T3 Thime required to estimate once
state does not depend on the A
total number of states =

I terrrvar ol state

Monte Carlo Estimation of Action Values (Q)

1 Monte Carlo is most useful when a model is not available
= We want to lecarn Q°

1 OQ7(s,a) - average return starting from state s and action a
follow ing -

1 Also converges asymptotically i/ every state-action pair is
visited

Y Fxploring staris: Every state-action pair has a non-zero

probability of being the starting pair
45

‘ Monte Carlo Exploring Starts

Initialize, for all s € S, a € A(s):
Q(s,a) « arbitrary
7(s) «— arbitrary
Returns(s,a) «+— empty list

Repeat forever:
(a) Generate an episode using exploring starts and =
(b) For each pair s,a appearing in the episode:
R «— return following the first occurrence of s,a
Append R to Returns(s.a)
Q(s,a) «— average(Returns(s,a))
(¢) For each s in the episode:
w(s) «— argmax, Q(s,a)

In MCES, all returns for each state-action pair are accumulated

and averaged, irrespective of what Policy was in force when
they were observed

Monte Carlo Control

evaluation

T
e Q

improvement

T3 MC policy iteration: Policy evaluation using MC methods
followed by policy improvement

1 Policy improvement step: greedify with respect to value
(or action-value) function

47

*Monte Carlo Method (Cont...)

= All actions should be selected infinitely for
optimization

= MC exploring starts can not converge to any
suboptimal policy.

= Agents have 2 approaches
< On-policy
< Off-policy

On-policy Monte Carlo Control

¥ On-policy: learn about policy currently executing
3 How do we get rid of exploring starts?

= Need sofr policies: a(s.a) > O for all s and a

= e¢.g. e-soft policy:

£

— 1
l.'l(.s‘)l

£
pe— t‘ + —_—
||
non-max greedy

=3 Similar to GPI: move policy rowards greedy policy (ie. e-
soft)

T Converges to best e-soft policy

49

S
3

*-t.

#On-policy MC algorithm

Initialize, for all states and actions
QOfs.a) = arbitrary
Remrns(s,a) = empy list
m = an arbitrary soft policy

Repeat forever:
(a) Generate an episode using ©
(b) For cach pair 5, @ appearing in the episode:
R = prtum following the first occumence of 5.0
Append R 1o Renonsis.a)
Qfrs,a) = average(Renons(s,al))

(c) For cach s in the episode;
a* = arg maxa Qfs.a)
For all acuons in s:
— _{I—e-&-ell:!(s)l ifa=a*
(5D =1er1 41 if a=d

s

.:\‘f]

®Off Policy MC algorithm

Off-policy: Follow one policy and learn about another
O Behavior policy generates behavior in environment
O Estmarion policy is policy being learned about

Behaviour policy can be soft (so exploring starts not needed)
and estimation policy can be deterministic (so fully greedy)

How do we evaluate one policy following another?
O Weight retums from behavior policy by probability they
would occur using the estimation policy

O Easier to evaluate estimation policy when behavior policy
is similar!

* Monte Carlo and Dynamic Programmi

“ MUC has several advantage over DP:
- Can learn from interaction with environment
< No need of full models
< No need to learn about ALL states
- No bootstrapping

52

‘3. Temporal Difference (TD) methods

Learn from experience, like MC
< Can learn directly from interaction with environment
- No need for full models

Estimate values based on estimated values of next states,
like DP

Bootstrapping (like DP)
Issue to watch for: maintaining sufficient exploration

i TD Prediction

Policy Evaluation (the prediction problem):
for a given policy 7z, compute the state-value function
3 5 s Ve
Simple every - visit Monte Carlomethod :
Vs,) < V(s,)+al R, —V(s,)]

target

The simplest TD method, TD(¢O0) :

Vs,) < V(s)+aln, + W)Vl
I

target

- Simple Monte Carlo

Vis,) < V(s)+alR —V(s,)]
where R 1s the actual return following state s,.

S‘

55

* mplest TD Method

V(s,)e— V(s)+alr.,, +7V(s,.,)—V(s)]

56

l’% Dynamic Programming

V(Sl) . Ezt{’;-o-l + ’}’V(S,)}

S
“

57

ki TD methods bootstrap and sample

“ Bootstrapping: update involves an estimate
- MC does not bootstrap
- DP bootstraps
- TD bootstraps

“ Sampling: update does not involve an expected
value

- MC samples
- DP does not sample
< TD samples

- Learning An Action-Value Function

Estimate QP for the current behavior policy p.

r r
S I+1 +2
Se,ay 1417 %141 t+22 %42
w5

After every transition from a nonterminal state s, , do this

Q(S, ’ar)ﬁQ(Sl ’at) +a[rl+l + gQ(St+l ’al+1) N Q(Sl ’al)]

If s, 1s terminal, then O(s,,,,a,.;) = O.

59

ki Q-Learning: Off-Policy TD Control
One -step Q- learning :

0G4« O(s,.a)+ ., +ymax 0Gs,...a)- 0Gs..a,) |

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g., s-greedy)
Take action a, observe r, s’
Q(s,a) «— Q(s,a) + alr + ymax, Q(s',a’) — Q(s, a)]
s «— s';
until s is terminal

60

J'.

B, 3
.l

Sarsa: On-Policy TD Control
S ARSA: State Action Reward State Action

Turn this into a control method by always updating the policy
to be greedy with respect to the current estimate:

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a’ from s’ using policy derived from Q (e.g., s-greedy)
Q(s,a) — Q(s,a) + a[r + vQ(s’,a") — Q(s, a)]
s — s8's a — a’;

until s is terminal

Gl

b4 Advantages of TD Learning

= TD methods do not require a model of the
environment, only experience

= TD, but not MC, methods can be fully incremental
< You can learn before knowing the final outcome
* Less memory
* Less peak computation
< You can learn without the final outcome

* From incomplete sequences
“ Both MC and TD converge

62

References: RL.

" Univ. of Alberta

= http://www.cs.ualberta.ca/~sutton/book/ebook/node
1. html

® Sutton and barto,”Reinforcement Learning an
introduction.”

“ Univ. of South Wales

= http://www.cse.unsw.edu.au/~cs9417ml/RL 1/tdlear
ning.html

O3

Thank You

