SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSE303 - ARTIFICIAL INTELLIGENCE III YEAR IV SEM

UNIT V - LEARNING

TOPIC : Statistical Learning

Statistical Learning

- Data - instantiations of some or all of the random variables describing the domain; they are evidence
- Hypotheses - probabilistic theories of how the domain works
- The Surprise candy example: two flavors in very large bags of 5 kinds, indistinguishable from outside
- h1: 100% cherry $-P(c \mid h 1)=1, P(| | h 1)=0$
- h2: 75% cherry $+25 \%$ lime
- h3: 50% cherry $+50 \%$ lime
- h4: 25% cherry $+75 \%$ lime
- h5: 100% lime

Problem formulation

- Given a new bag, random variable H denotes the bag type (h1-h5); D_{i} is a random variable (cherry or lime); after seeing $\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{N}}$, predict the flavor (value) of $\mathrm{D}_{\mathrm{N}-1}$.
- Bayesian learning
- Calculates the probability of each hypothesis, given the data and makes predictions on that basis
- $P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)$, where \mathbf{d} are observed values of \mathbf{D}
- To make a prediction about an unknown quantity X
- $P(X \mid \mathbf{d})=\sum_{i} P\left(X \mid d, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} P\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} P\left(X \mid h_{i}\right) P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right) / P(\mathbf{d})$
assuming that hi determines a probability distribution over X
Predictions use a likelihood-weighted average over hypotheses
- Hypothesis prior $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$ and likelihood of the data under each $\mathrm{h}_{\mathrm{i}}, \mathrm{P}\left(\mathbf{d} \mid \mathrm{h}_{\mathrm{i}}\right)$;
- One distribution for $P\left(h_{i}\right)$ is $\langle 0.1,0.2,0.4,0.2,0.1\rangle$.
- hi are intermediaries between raw data and predictions
- No need to pick one best-guess hypothesis
- $\mathrm{P}\left(\mathbf{d} \mid \mathrm{h}_{\mathrm{i}}\right)=\Pi_{\mathrm{j}} \mathrm{P}\left(\mathrm{d}_{\mathrm{j}} \mid \mathrm{h}_{\mathrm{i}}\right)$ assuming observations are i.i.d. (independent, and identically distributed)
* How each $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathbf{d}\right)$ changes when a sequence of 10 lime candies is observed (Fig. 20.1)
- True hypothesis eventually dominates the Bayesian prediction - the feature of Bayesian learning
- Bayesian prediction is optimal; its hypothesis space is usually very large or infinite
- Let's see how these curves (Fig.20.1 a) are obtained - $P(h 2|\mid 1)=; P(h 2|11| 2)=,; P(h 2|11| 2,13)=,; \ldots$
- How to obtain Fig.20.1 b $-P(X \mid \mathbf{d})$ for $X=$ lime

Common approximations

MAP (maximum a posteriori): $\mathrm{P}(\mathrm{X} \mid \mathbf{d}) \sim \mathrm{P}\left(\mathrm{X} \mid \mathrm{h}_{\text {MAP }}\right)$

- $P($ lime $\| 1, I 2, I 3)=0.8$ (from Fig 20.1b), but after seeing $\mid 1, I 2$, and $I 3, P(h 5|I 1| 2,, I 3)$ is the max, $\mathrm{P}($ lime |h5 $)=1$.
- $h_{\text {map }}$ is hi that maximizes $P\left(h_{i} \mid d\right) \cong P\left(d \mid h_{i}\right) P\left(h_{i}\right)$ (Fig 20.1a)
- Finding MAP hypotheses is much easier than Bayes Learning
- B and MAP learning use the prior to penalize complexity
- MAP learning chooses hi that compresses data most, or minimum description length (MDL)

ML can be obtained from MAP if $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$ is uniform

- hmL is hi that maximizes $\mathrm{P}\left(\mathbf{d} \mid \mathrm{h}_{\mathrm{i}}\right)$ (Why?)
- It is reasonable when (1) no preferable hypothesis a priori, (2) data set is large

In short, $P(X \mid d) \cong \sum_{i} P\left(X \mid h_{i}\right) P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)-$ (Bayes learning)

- $\cong P\left(X \mid h_{\text {MAP }}\right) P\left(d \mid h_{\text {MAP }}\right) P\left(h_{\text {MAP }}\right)-(M A P)$
- $\cong P\left(X \mid h_{M L}\right) P\left(\mathbf{d} \mid h_{M L}\right)-(M L)$

Learning with Complete Data

Parameter learning - to find the numerical parameters for a probability model whose structure is fixed

- Data are complete when each data point contains values for every variable in the model
Maximum-likelihood parameter learning: discrete model
- Two examples: one and three parameters
- To be seen in next 3 slides (From the book authors' slides)
- With complete data, ML parameter learning problem for a Bayesian network decomposes into separate learning problems, one for each parameter
- A significant problem with ML learning - 0 may be assigned to some events that have not been observed
- Various tricks are used to avoid this problem. One is to assign count $=1$ instead of 0 to each event

Bag from a new manufacturer; fraction θ of cherry candies? Any θ is possible: continuum of hypotheses h_{θ} θ is a parameter for this simple (binomial) family of models

Suppose we unwrap N candies, c cherries and $\ell=N-c$ limes

These are i.i.d. (independent, identically distributed) observations, so

$$
P\left(\mathbf{d} \mid h_{\theta}\right)=\prod_{j=1}^{N} P\left(d_{j} \mid h_{\theta}\right)=\theta^{c} \cdot(1-\theta)^{\ell}
$$

Maximize this w.r.t. θ-which is easier for the log-likelihood:

$$
\begin{aligned}
L\left(\mathbf{d} \mid h_{\theta}\right) & =\log P\left(\mathbf{d} \mid h_{\theta}\right)=\sum_{j=1}^{N} \log P\left(d_{j} \mid h_{\theta}\right)=c \log \theta+\ell \log (1-\theta) \\
\frac{d L\left(\mathbf{d} \mid h_{\theta}\right)}{d \theta} & =\frac{c}{\theta}-\frac{\ell}{1-\theta}=0 \quad \Rightarrow \quad \theta=\frac{c}{c+\ell}=\frac{c}{N}
\end{aligned}
$$

Seems sensible, but causes problems with 0 counts!

Multiple parameters

Red/green wrapper depends probabilistically on flavor:
Likelihood for, e.g., cherry candy in green wrapper:

$$
\begin{aligned}
& P\left(F=\text { cherry }, W=\text { green } \mid h_{\theta, \theta_{1}, \theta_{2}}\right) \\
& =P\left(F=\text { cherry } \mid h_{\theta, \theta_{1}, \theta_{2}}\right) P\left(W=\text { green } \mid F=\text { cherry, } h_{\theta, \theta_{1}, \theta_{2}}\right) \\
& =\theta \cdot\left(1-\theta_{1}\right)
\end{aligned}
$$

N candies, r_{c} red-wrapped cherry candies, etc.:

$P(F=$ cherry $)$
$\boldsymbol{\theta}$

Flavor

$$
P\left(\mathbf{d} \mid h_{\theta, \theta_{1}, \theta_{2}}\right)=\theta^{c}(1-\theta)^{\ell} \cdot \theta_{1}^{r_{c}}\left(1-\theta_{1}\right)^{\boldsymbol{g}_{c}} \cdot \theta_{2}^{r_{\ell}}\left(1-\theta_{2}\right)^{g_{\ell}}
$$

$$
\begin{aligned}
L & =[c \log \theta+\ell \log (1-\theta)] \\
& +\left[r_{c} \log \theta_{1}+g_{c} \log \left(1-\theta_{1}\right)\right] \\
& +\left[r_{\ell} \log \theta_{2}+g_{\ell} \log \left(1-\theta_{2}\right)\right]
\end{aligned}
$$

(From the text book web site) CSE

Multiple parameters contd.

Derivatives of L contain only the relevant parameter:

$$
\begin{array}{ll}
\frac{\partial L}{\partial \theta}=\frac{c}{\theta}-\frac{\ell}{1-\theta}=0 & \Rightarrow \theta=\frac{c}{c+\ell} \\
\frac{\partial L}{\partial \theta_{1}}=\frac{r_{c}}{\theta_{1}}-\frac{g_{c}}{1-\theta_{1}}=0 \quad & \Rightarrow \quad \theta_{1}=\frac{r_{c}}{r_{c}+g_{c}} \\
\frac{\partial L}{\partial \theta_{2}}=\frac{r_{\ell}}{\theta_{2}}-\frac{g_{\ell}}{1-\theta_{2}}=0 \quad & \Rightarrow \quad \theta_{2}=\frac{r_{\ell}}{r_{\ell}+g_{\ell}}
\end{array}
$$

With complete data, parameters can be learned separately
(From the text book web site) CSE

After optimization

-So, we are convinced by the previous optimization procedure
-What's the learning from data?

- Estimate the probabilities from data
- The details can be seen in the example of NBC

Naïve Bayes models

The most common Bayesian network model used in machine learning

- Figure 20.3 Comparison between DT and NBC

It assumes that the attributes are conditionally independent of each other, given class

- Fig 20.2(b) is a NBC with the parameters for $i^{\text {th }}$ instance as:

$$
\begin{aligned}
& \Theta=P(C=T), \Theta_{i 1}=P\left(X_{i 1}=T \mid C=T\right), \Theta_{i 2}=P\left(X_{i 2}=T \mid C=F\right) \\
& \Theta=P(\text { Cherry }), \Theta_{i 1}=P(\text { Red } \mid \text { Cherry }), \Theta_{i 2}=P(\text { Red } \mid \neg \text { Cherry })
\end{aligned}
$$

- A deterministic prediction can be obtained by choosing the most likely class
- $\mathbf{P}\left(C \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha P(C) \Pi_{i} P\left(x_{i} \mid C\right)$
- NBC has no difficulty with nosy data
- For n Boolean attributes, there are just $2 n+1$ parameters, no search is required for finding h_{ML}

Learning with Hidden Variables

Many real-world problems have hidden variables which are not observable in the data available for learning.

- Question: If a variable (disease) is not observed, why not construct a model without it?
- Answer: Hidden variables can dramatically reduce the number of parameters required to specify a Bayesian network. This results in the reduction of needed amount of data for learning.
- Fig. 20.7 from 708 parameters to 78.

EM: Learning mixtures of Gaussians

The unsupervised clustering problem (Fig 20.8 with 3 components): $\mathrm{P}(\mathbf{x})=$ $\sum_{i=1}^{k} P(C=i) P(\mathbf{x} \mid C=i)$

- If we knew which component generated each X_{j}, we can get μ, σ
- If we knew the parameters of each component, we know which c_{i} should x_{j} belong to. However, we do not know either, ...
EM - expectation and maximization
- Pretend we know the parameters of the model and then to infer the probability that each x_{j} belongs to each component; iterate until convergence.
- For the mixture of Gaussians, initialize the mixture model parameters arbitrarily; and iterate the following
- E-step: Compute $p_{i j}=P\left(C=i \mid \mathbf{x}_{\mathrm{j}}\right)=\alpha P\left(\mathbf{x}_{\mathrm{j}} \mid \mathrm{C}=\mathrm{i}\right) \mathrm{P}(\mathrm{C}=\mathrm{i})$

$$
\mathrm{P}(\mathrm{C}=\mathrm{i})=\mathrm{p}_{\mathrm{i}}=\Sigma_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}
$$

- M-step: Compute the new $\mu_{i}=\Sigma_{j} p_{i j} \mathbf{x}_{\mathrm{j}} / \mathrm{p}_{\mathrm{i}}, \Sigma_{\mathrm{i}} \mathrm{p}_{\mathrm{ij}} \mathbf{x}_{\mathrm{j}} \mathbf{x}_{\mathrm{j}}^{\top} / \mathrm{p}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}$ (component weight)
- E-step computes the expected value p_{ij} of the hidden indicator variables Z_{ij}, where Z_{ij} is 1 if x_{j} was generated by i th component, 0 otherwise
- M-step finds the new values of the parameters that maximize the log likelihood of the data, given the expected values of Z_{ij}
- Fig 20.8(c) is learned from Fig. 20.8(a)
- Fig 20.9(a) plots the log likelihood of the data as EM progresses
- EM increases the log likelihood of the data at each iteration.
- EM can reach a local maximum in likelihood.

EM: Learning Bayesian networks with hidden variables

Fig 20.10: two bags of mixed candies described by 3 features: Flavor, Wrapper, and Hole

- The candy distribution is described by a naïve Bayes: the features are independent, given the bag
- The parameters are: Θ - the probability that a candy from bag $1 ; \Theta_{\text {F1 }}$ and $\Theta_{\mathrm{F} 2}$ - the probabilites that the flavor is cherry given that a candy from bag 1 and bag2; $\Theta_{w_{1}}$ and $\Theta_{\mathrm{w} 2}$ for red wrapper from bag1 and bag 2; and $\Theta_{\mathrm{H} 1}$ and $\Theta_{\mathrm{H} 2}$ that the candy has a hole from bag1 and bag2.
- EM details are ...

Instance-based Learning

- Parametric vs. nonparametric learning
- Learning focuses on fitting the parameters of a restricted family of probability models to an unrestricted data set
- Parametric learning methods are often simple and effective, but can oversimplify what's really happening
- Nonparametric learning allows the hypothesis complexity to grow with the data
- IBL is nonparametric as it constructs hypotheses directly from the training data.

Nearest-neighbor models

- The key idea: Neighbors are similar
- Density estimation example: estimate x's probability density by the density of its neighbors
- Connecting with table lookup, NBC, decision trees, ...
- How define neighborhood N
- If too small, no any data points
- If too big, density is the same everywhere
- A solution is to define N to contain k points, where k is large enough to ensure a meaningful estimate
- For a fixed k, the size of N varies (Fig 21.12)
- The effect of size of k (Figure 21.13)
- For most low-dimensional data, k is usually between 5-10

K-NN for a given query x

- Which data point is nearest to x ?

- We need a distance metric, $\mathrm{D}(\mathrm{x} 1, \mathrm{x} 2)$
- Euclidean distance D_{E} is a popular one
- When each dimension measures something different, it is inappropriate to use D_{E} (Why?)
- Important to standardize the scale for each dimension
- Mahalanobis distance is one solution
- Discrete features should be dealt with differently
- Hamming distance
- Use k-NN to predict
- High dimensionality poses another problem
- The nearest neighbors are usually a long way away!
- A d-dimensional hypercube of side $b \leq 1$, its volume is b^{d}, given N data points, for each neighborhood to have k points, how big is b ?

Summary

- Bayesian learning formulates learning as a form of probabilistic inference, using the observations to update a prior distribution over hypotheses.
- Maximum a posteriori (MAP) selects a single most likely hypothesis given the data.
- Maximum likelihood simply selects the hypothesis that maximizes the likelihood of the data (= MAP with a uniform prior).
EM can find local maximum likelihood solutions for hidden variables.
- Instance-based models use the collection of data to represent a distribution.
- Nearest-neighbor method

