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Statistical Learning
Data – instantiations of some or all of the random variables describing the 
domain; they are evidence

Hypotheses – probabilistic theories of how the domain works

The Surprise candy example: two flavors in very large bags of 5 kinds, 
indistinguishable from outside

 h1: 100% cherry – P(c|h1) = 1, P(l|h1) = 0

 h2: 75% cherry + 25% lime

 h3: 50% cherry + 50% lime

 h4: 25% cherry + 75% lime

 h5: 100% lime
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Problem formulation 
 Given a new bag, random variable H denotes the bag type (h1 – h5); Di is a random 

variable (cherry or lime); after seeing D1, D2, …, DN, predict the flavor (value) of DN-1. 

Bayesian learning
 Calculates the probability of each hypothesis, given the data and makes predictions 

on that basis
 P(hi|d) = αP(d|hi)P(hi), where d are observed values of D

 To make a prediction about an unknown quantity X
 P(X|d)=iP(X|d,hi)P(hi|d)=iP(X|hi)P(hi|d)=iP(X|hi)P(d|hi)P(hi)/P(d)

assuming that hi determines a probability distribution over X
Predictions use a likelihood-weighted average over hypotheses

 Hypothesis prior P(hi) and likelihood of the data under each hi, P(d|hi); 
 One distribution for P(hi) is <0.1, 0.2, 0.4, 0.2, 0.1>.

 hi are intermediaries between raw data and predictions
 No need to pick one best-guess hypothesis
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P(d|hi) = ΠjP(dj|hi) assuming observations are i.i.d. (independent, and identically 

distributed)

How each P(hi|d) changes when a sequence of 10 lime candies is observed 
(Fig. 20.1)

 True hypothesis eventually dominates the Bayesian prediction – the feature of 
Bayesian learning

 Bayesian prediction is optimal; its hypothesis space is usually very large or 
infinite

 Let’s see how these curves (Fig.20.1 a) are obtained

 P(h2|l1) = ; P(h2|l1,l2) = ; P(h2|l1,l2,l3) = ; …

 How to obtain Fig.20.1 b – P(X|d) for X = lime
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Common approximations
MAP (maximum a posteriori): P(X|d) ~ P(X|hMAP)
 P(lime|l1,l2,l3) = 0.8 (from Fig 20.1b), but after seeing l1,l2,and l3, P(h5|l1,l2,l3) is 

the max, P(lime|h5)=1.

 hMAP is hi that maximizes P(hi|d)  P(d|hi)P(hi) (Fig 20.1a)
 Finding MAP hypotheses is much easier than Bayes Learning

 B and MAP learning use the prior to penalize complexity

 MAP learning chooses hi that compresses data most, or minimum description length (MDL)

ML can be obtained from MAP if P(hi) is uniform
 hML is hi that maximizes P(d|hi) (Why?)

 It is reasonable when (1) no preferable hypothesis a priori, (2) data set is large

In short, P(X|d)iP(X|hi)P(d|hi)P(hi) – (Bayes learning)

  P(X|hMAP)P(d|hMAP)P(hMAP) – (MAP)

  P(X|hML)P(d|hML) – (ML)
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Learning with Complete Data
Parameter learning - to find the numerical parameters for a probability model 
whose structure is fixed

Data are complete when each data point contains values for every variable in the 
model

Maximum-likelihood parameter learning: discrete model
 Two examples: one and three parameters

 To be seen in next 3 slides (From the book authors’ slides)

 With complete data, ML parameter learning problem for a Bayesian network decomposes 
into separate learning problems, one for each parameter

 A significant problem with ML learning – 0 may be assigned to some events that have not 
been observed

 Various tricks are used to avoid this problem. One is to assign count = 1 instead of 0 
to each event



(from the text book web site) CSE 
471/598 by H. Liu 7



(From the text book web site) CSE 
471/598 by H. Liu 8



(From the text book web site) CSE 
471/598 by H. Liu 9



CSE 471/598 by H. Liu 10

After optimization

So, we are convinced by the previous 
optimization procedure

What’s the learning from data?

 Estimate the probabilities from data

 The details can be seen in the example of 
NBC
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Naïve Bayes models
The most common Bayesian network model used in machine learning
 Figure 20.3 Comparison between DT and NBC

It assumes that the attributes are conditionally independent of each other, 
given class
 Fig 20.2(b) is a NBC with the parameters for ith instance as: 

Θ=P(C=T), Θi1=P(Xi1=T|C=T), Θi2=P(Xi2=T|C=F)

Θ=P(Cherry), Θi1=P(Red|Cherry), Θi2=P(Red|¬Cherry)

A deterministic prediction can be obtained by choosing the most likely class
 P(C|x1,x2,…,xn) = αP(C) Πi P(xi|C)

NBC has no difficulty with nosy data

 For n Boolean attributes, there are just 2n+1 parameters, no search is required 
for finding hML
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Learning with Hidden Variables
Many real-world problems have hidden variables which are not 
observable in the data available for learning.

Question: If a variable (disease) is not observed, why not construct 
a model without it?

Answer: Hidden variables can dramatically reduce the number of 
parameters required to specify a Bayesian network. This results in 
the reduction of needed amount of data for learning.

 Fig. 20.7 from 708 parameters to 78.
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EM: Learning mixtures of Gaussians
The unsupervised clustering problem (Fig 20.8 with 3 components): P(x) = 
k

i=1P(C=i)P(x|C=i)
 If we knew which component generated each xj, we can get ,

 If we knew the parameters of each component, we know which ci should xj 

belong to. However, we do not know either, …

EM – expectation and maximization
 Pretend we know the parameters of the model and then to infer the probability 

that each xj belongs to each component; iterate until convergence. 

For the mixture of Gaussians, initialize the mixture model parameters 
arbitrarily; and iterate the following
 E-step: Compute pij = P(C=i|xj) = αP(xj|C=i)P(C=i)

P(C=i) = pi =  j pij

 M-step:  Compute the new i = j pijxj/pi, i pijxjxj
T/pi, wi = pi (component 

weight)
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E-step computes the expected value pij of the hidden indicator 
variables Zij, where Zij is 1 if xj was generated by i-th component, 0 
otherwise

M-step finds the new values of the parameters that maximize the log 
likelihood of the data, given the expected values of Zij

Fig 20.8(c) is learned from Fig. 20.8(a)

 Fig 20.9(a) plots the log likelihood of the data as EM progresses
 EM increases the log likelihood of the data at each iteration. 

 EM can reach a local maximum in likelihood. 



CSE 471/598 by H. Liu 15

EM: Learning Bayesian networks with hidden 
variables

Fig 20.10: two bags of mixed candies described by 3 features: 
Flavor, Wrapper, and Hole

 The candy distribution is described by a naïve Bayes: the features are 
independent, given the bag

 The parameters are: Θ – the probability that a candy from bag 1; ΘF1

and ΘF2 – the probabilites that the flavor is cherry given that a candy 
from bag 1 and bag2; ΘW1 and ΘW2 for red wrapper from bag1 and bag 
2; and ΘH1 and ΘH2 that the candy has a hole from bag1 and bag2. 

EM details are …
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Instance-based Learning
Parametric vs. nonparametric learning

 Learning focuses on fitting the parameters of a restricted family of probability 
models to an unrestricted data set

 Parametric learning methods are often simple and effective, but can oversimplify 
what’s really happening

 Nonparametric learning allows the hypothesis complexity to grow with the data

 IBL is nonparametric as it constructs hypotheses directly from the training data.
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Nearest-neighbor models
The key idea: Neighbors are similar

 Density estimation example: estimate x’s probability density by the 
density of its neighbors

 Connecting with table lookup, NBC, decision trees, …

How define neighborhood N

 If too small, no any data points

 If too big, density is the same everywhere

 A solution is to define N to contain k points, where k is large enough to 
ensure a meaningful estimate
 For a fixed k, the size of N varies (Fig 21.12)

 The effect of size of k (Figure 21.13)

 For most low-dimensional data, k is usually between 5-10
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K-NN for a given query x
Which data point is nearest to x?
 We need a distance metric, D(x1, x2)

 Euclidean distance DE is a popular one

 When each dimension measures something different, it is inappropriate to use DE (Why?)

 Important to standardize the scale for each dimension
 Mahalanobis distance is one solution

 Discrete features should be dealt with differently
 Hamming distance

Use k-NN to predict

High dimensionality poses another problem
 The nearest neighbors are usually a long way away!

 A d-dimensional hypercube of side b  1, its volume is bd, given N data points, for each neighborhood 
to have k points, how big is b?
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Summary
Bayesian learning formulates learning as a form of probabilistic inference, 
using the observations to update a prior distribution over hypotheses. 

Maximum a posteriori (MAP) selects a single most likely hypothesis given 
the data.

Maximum likelihood simply selects the hypothesis that maximizes the 
likelihood of the data (= MAP with a uniform prior).

EM can find local maximum likelihood solutions for hidden variables.

Instance-based models use the collection of data to represent a distribution.
 Nearest-neighbor method


