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Data — instantiations of some or all of the random variables describing the
domain; they are evidence

Hypotheses — probabilistic theories of how the domain works
The Surprise candy example: two flavors in very large bags of 5 kinds,
indistinguishable from outside

= h1:100% cherry — P(clh1) =1, P(Ilh1) =0

m h2: 75% cherry + 25% lime

m h3: 50% cherry + 50% lime

m  h4d: 25% cherry + 75% lime

s h5: 100% lime
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% Problem formulation

Given a new bag, random variable H denotes the bag type (h1 — h5); D, is a random
variable (cherry or lime); after seeing D, D, ..., D, predict the flavor (value) of Dw..

# Bayesian learning

Calculates the probability of each hypothesis, given the data and makes predictions
on that basis

+ P(hild) = aP(d|hi)P(hi), where d are observed values of D
To make a prediction about an unknown quantity X

+ P(X|d)=ZiP(X|d,hi)P(hi|d)=2iP(X|hi)P(hi|d)=ZiP(X|hi)P(d | hi)P(hi)/P(d)

assuming that hi determines a probability distribution over X

Predictions use a likelihood-weighted average over hypotheses

+ Hypothesis prior P(hi) and /likelihood of the data under each h;, P(d|h);
m One distribution for P(hi) is <0.1, 0.2, 0.4, 0.2, 0.1>.

+ hi are /intermediaries between raw data and predictions

+ No need to pick one best-guess hypothesis
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X 2 P(dlhi) = an(djlhi) assuming observations are i.i.d. (independent, and identically
distributed)

4 How each P(h;|d) changes when a sequence of 10 lime candies is observed
(Fig. 20.1)

= True hypothesis eventually dominates the Bayesian prediction — the feature of
Bayesian learning

= Bayesian prediction is optimal; its hypothesis space is usually very large or
infinite
= Let's see how these curves (Fig.20.1 a) are obtained
+ P(h2|11) = : P(h2|I1,12) = ; P(h2|I1,12,13) = ; ...
= How to obtain Fig.20.1 b — P(X|d) for X = lime
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* Common approximations

rd|
% MAP (maximum a posteriori): P(X|d) ~ P(X|hwap)
= P(lime]l1,12,13) = 0.8 (from Fig 20.1b), but after seeing I1,12,and 13, P(h5]l1,12,13) is
the max, P(lime|h5)=1.
= hweis hi that maximizes P(hild) = P(d | hi)P(hi) (Fig 20.1a)
+ Finding MAP hypotheses is much easier than Bayes Learning
+ B and MAP learning use the prior to penalize complexity
+ MAP learning chooses hi that compresses data most, or minimum description length (MDL)

#® ML can be obtained from MAP if P(hi) is uniform

= hw is hi that maximizes P(d|hi) (Why?)

= It is reasonable when (1) no preferable hypothesis a priori, (2) data set is large
@ In short, P(X|d)=XiP(X|hi)P(d | hi)P(hi) — (Bayes learning)

n = P(X[huap)P(d | hyap)P(hyap) — (MAP)

= = P(X|hy )P(d | hy) — (ML)
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» Learning with Complete Data
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Parameter learning - to find the numerical parameters for a probability model
whose structure is fixed

Data are complete when each data point contains values for every variable in the
model
Maximum-likelihood parameter learning: discrete model

= Two examples: one and three parameters
+ To be seen in next 3 slides (From the book authors’ slides)

= With complete data, ML parameter learning problem for a Bayesian network decomposes
into separate learning problems, one for each parameter

= A significant problem with ML learning — 0 may be assigned to some events that have not
been observed

+ Various tricks are used to avoid this problem. One is to assign count = 1 instead of 0
to each event
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ML parameter learning imn Bayves nets

Bag from a new manufacturer; fraction ¢ of cherry candies?
Any ¢ 1s possible: continuum of hypotheses /i
 is a parameter for this simple (binomial) family of models

Suppose we unwrap N candies, ¢ cherries and £ =N — ¢ limes

P F=cherry)

&

These are i.i.d. (independent, identically distributed) observations, so

N
P(d|hg) = TI P(d;|hg) = 6°- (1 — 8)"
_-::1 i

Maximize this w.r.t. —which is easier for the log-likelihood:

L{d|hg) = log P(d|hg) = X log Pld;|hs) = clogt + flog(l — &)
ji=1
dL{d|hg) c § . p c e
—_—— O — — = = = = —_—
b 7 1 — & c 4 N

Seems sensible, but causes problems with 0 counts!

(from the text book web site) CSE
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Multiple parameters

Red/green wrapper depends probabilistically on flavor:

Likelihood for, e.g., cherry candy in green wrapper:

P(F = cherry, W = green|hgg, a,)

P(F = cherry|hss, o) P(W = green|F = cherry. hog, s,)

#-(1—6)

N candies, r. red-wrapped cherry candies, etc.:

P(d

+ o+

) Py R { g R T ATp . SR/
|hoon6,) = 0°(1 — 6)° - 07(1 — 61)% - 65 (1 — 62)
[r.'_,_,g‘{_;r + £ ll_;-;'_"_[:]_ — tf‘fml

[relog 8y + g.log(1 — 0y)
[relog 62 + gelog(1 — 65)]

(From the text book web site) CSE
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ﬁultiple parameters cont d.

Derivatives of L. contain only the relevant parameter:

'l i £ . i

A g 01— ¢ o4 £

L e i~ .

' e e 1 — &4 e + e
I':_}_I_. .rlr' III.:
r'_.-lll:.i‘ll_- I{.'-r_:; l — F.-;I_‘:- - |r'.: + .l:?"'

With complete data, parameters can be learned separately

(From the text book web site) CSE
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" After optimization

# S0, we are convinced by the previous
optimization procedure

#\What's the learning from data?

= Estimate the probabilities from data

= The details can be seen in the example of
NBC

D
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* Naive Bayes models

A
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# The most common Bayesian network model used in machine learning
» Figure 20.3 Comparison between DT and NBC

# It assumes that the attributes are conditionally independent of each other,
given class

= Fig 20.2(b) is a NBC with the parameters for ith instance as:
©=P(C=T), ©,;=P(X;;=T|C=T), ©,,=P(X,,=T|C=F)
©=P(Cherry), ©,,=P(Red|Cherry), ©,,=P(Red|-Cherry)
# A deterministic prediction can be obtained by choosing the most likely class
n P(C|x{,X5,...,X,) = aP(C) . P(x;|C)
# NBC has no difficulty with nosy data

» For n Boolean attributes, there are just 2n+1 parameters, no search is required
for finding hy,_

CSE 471/598 by H. Liu 11




-

Learning with Hidden Variables

# Many real-world problems have hidden variables which are not
observable in the data available for learning.

# Question: If a variable (disease) is not observed, why not construct
a model without it?

# Answer: Hidden variables can dramatically reduce the number of
parameters required to specify a Bayesian network. This results in
the reduction of needed amount of data for learning.

= Fig. 20.7 from 708 parameters to 78.

D
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EM: Learning mixtures of Gaussians

# The unsupervised clustering problem (Fig 20.8 with 3 components): P(x) =
sk _P(C=i)P(x|C=i)
= If we knew which component generated each x;, we can get y,c

= If we knew the parameters of each component we know which ¢; should x;
belong to. However, we do not know either, .

#® EM — expectation and maximization
= Pretend we know the parameters of the model and then to infer the probability
that each x; belongs to each component; iterate until convergence.
# For the mixture of Gaussians, initialize the mixture model parameters
arbitrarily; and iterate the following
» E-step: Compute p; = P(C=i|x;) = aP(x;|C=i)P(C=i)
P(C=i) = p; = Z pj
s M-step: Compute the new ; = %, piXi/p;, Z; PyXX;'/p;, W; = p; (component
weight)
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¢ E-step computes the expected value pP;; of the Aidden indicator
variables Z;, where Z; is 1 if x; was generated by ~th component, 0
otherwise

# M-step finds the new values of the parameters that maximize the log

likelihood of the data, given the expected values of Z;
# Fig 20.8(c) is learned from Fig. 20.8(a)

= Fig 20.9(a) plots the log likelihood of the data as EM progresses
+ EM increases the log likelihood of the data at each iteration.
+ EM can reach a local maximum in likelihood.
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# EM: Learning Bayesian networks with hidden
variables

# Fig 20.10: two bags of mixed candies described by 3 features:
Flavor, Wrapper, and Hole
= The candy distribution is described by a naive Bayes: the features are
independent, given the bag

= The parameters are: © — the probability that a candy from bag 1; O
and O, — the probabilites that the flavor is cherry given that a candy
from bag 1 and bag2; ©,,; and O, for red wrapper from bagl and bag
2; and ©,; and ©,, that the candy has a hole from bagl and bag?2.

# EM details are ...

D
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Instance-based Learning

D

# Parametric vs. nonparametric learning

Learning focuses on fitting the parameters of a restricted family of probability
models to an unrestricted data set

Parametric learning methods are often simple and effective, but can oversimplify
what's really happening
Nonparametric learning allows the hypothesis complexity to grow with the data

IBL is nonparametric as it constructs hypotheses directly from the training data.
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" Nearest-neighbor models

# The key idea: Neighbors are similar

= Density estimation example: estimate x’s probability density by the
density of its neighbors

= Connecting with table lookup, NBC, decision trees, ...

# How define neighborhood N
= If too small, no any data points
= If too big, density is the same everywhere

= A solution is to define N to contain k points, where k is large enough to
ensure a meaningful estimate
+ For a fixed k, the size of N varies (Fig 21.12)
» The effect of size of k (Figure 21.13)
+ For most low-dimensional data, k is usually between 5-10
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* K-NN for a given query X

“# Which data point is nearest to x?

We need a distance metric, D(x1, x2)
Euclidean distance D¢ is a popular one

When each dimension measures something different, it is inappropriate to use D (Why?)

Important to standardize the scale for each dimension
+ Mahalanobis distance is one solution

Discrete features should be dealt with differently
+ Hamming distance

# Use k-NN to predict
# High dimensionality poses another problem

The nearest neighbors are usually a long way away!

+ A d-dimensional hypercube of side b < 1, its volume is 57, given Ndata points, for each neighborhood

to have & points, how big is 6?
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Summary

¢ ® @ * @

Bayesian learning formulates learning as a form of probabilistic inference,

using the observations to update a prior distribution over hypotheses.
Maximum a posteriori (MAP) selects a single most likely hypothesis given

the data.

Maximum likelihood simply selects the hypothesis that maximizes the
likelihood of the data (= MAP with a uniform prior).

EM can find local maximum likelihood solutions for hidden variables.

Instance-based models use the collection of data to represent a distribution.
= Nearest-neighbor method
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