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Statistical Learning
Data – instantiations of some or all of the random variables describing the 
domain; they are evidence

Hypotheses – probabilistic theories of how the domain works

The Surprise candy example: two flavors in very large bags of 5 kinds, 
indistinguishable from outside

 h1: 100% cherry – P(c|h1) = 1, P(l|h1) = 0

 h2: 75% cherry + 25% lime

 h3: 50% cherry + 50% lime

 h4: 25% cherry + 75% lime

 h5: 100% lime
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Problem formulation 
 Given a new bag, random variable H denotes the bag type (h1 – h5); Di is a random 

variable (cherry or lime); after seeing D1, D2, …, DN, predict the flavor (value) of DN-1. 

Bayesian learning
 Calculates the probability of each hypothesis, given the data and makes predictions 

on that basis
 P(hi|d) = αP(d|hi)P(hi), where d are observed values of D

 To make a prediction about an unknown quantity X
 P(X|d)=iP(X|d,hi)P(hi|d)=iP(X|hi)P(hi|d)=iP(X|hi)P(d|hi)P(hi)/P(d)

assuming that hi determines a probability distribution over X
Predictions use a likelihood-weighted average over hypotheses

 Hypothesis prior P(hi) and likelihood of the data under each hi, P(d|hi); 
 One distribution for P(hi) is <0.1, 0.2, 0.4, 0.2, 0.1>.

 hi are intermediaries between raw data and predictions
 No need to pick one best-guess hypothesis
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P(d|hi) = ΠjP(dj|hi) assuming observations are i.i.d. (independent, and identically 

distributed)

How each P(hi|d) changes when a sequence of 10 lime candies is observed 
(Fig. 20.1)

 True hypothesis eventually dominates the Bayesian prediction – the feature of 
Bayesian learning

 Bayesian prediction is optimal; its hypothesis space is usually very large or 
infinite

 Let’s see how these curves (Fig.20.1 a) are obtained

 P(h2|l1) = ; P(h2|l1,l2) = ; P(h2|l1,l2,l3) = ; …

 How to obtain Fig.20.1 b – P(X|d) for X = lime
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Common approximations
MAP (maximum a posteriori): P(X|d) ~ P(X|hMAP)
 P(lime|l1,l2,l3) = 0.8 (from Fig 20.1b), but after seeing l1,l2,and l3, P(h5|l1,l2,l3) is 

the max, P(lime|h5)=1.

 hMAP is hi that maximizes P(hi|d)  P(d|hi)P(hi) (Fig 20.1a)
 Finding MAP hypotheses is much easier than Bayes Learning

 B and MAP learning use the prior to penalize complexity

 MAP learning chooses hi that compresses data most, or minimum description length (MDL)

ML can be obtained from MAP if P(hi) is uniform
 hML is hi that maximizes P(d|hi) (Why?)

 It is reasonable when (1) no preferable hypothesis a priori, (2) data set is large

In short, P(X|d)iP(X|hi)P(d|hi)P(hi) – (Bayes learning)

  P(X|hMAP)P(d|hMAP)P(hMAP) – (MAP)

  P(X|hML)P(d|hML) – (ML)
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Learning with Complete Data
Parameter learning - to find the numerical parameters for a probability model 
whose structure is fixed

Data are complete when each data point contains values for every variable in the 
model

Maximum-likelihood parameter learning: discrete model
 Two examples: one and three parameters

 To be seen in next 3 slides (From the book authors’ slides)

 With complete data, ML parameter learning problem for a Bayesian network decomposes 
into separate learning problems, one for each parameter

 A significant problem with ML learning – 0 may be assigned to some events that have not 
been observed

 Various tricks are used to avoid this problem. One is to assign count = 1 instead of 0 
to each event
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After optimization

So, we are convinced by the previous 
optimization procedure

What’s the learning from data?

 Estimate the probabilities from data

 The details can be seen in the example of 
NBC
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Naïve Bayes models
The most common Bayesian network model used in machine learning
 Figure 20.3 Comparison between DT and NBC

It assumes that the attributes are conditionally independent of each other, 
given class
 Fig 20.2(b) is a NBC with the parameters for ith instance as: 

Θ=P(C=T), Θi1=P(Xi1=T|C=T), Θi2=P(Xi2=T|C=F)

Θ=P(Cherry), Θi1=P(Red|Cherry), Θi2=P(Red|¬Cherry)

A deterministic prediction can be obtained by choosing the most likely class
 P(C|x1,x2,…,xn) = αP(C) Πi P(xi|C)

NBC has no difficulty with nosy data

 For n Boolean attributes, there are just 2n+1 parameters, no search is required 
for finding hML
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Learning with Hidden Variables
Many real-world problems have hidden variables which are not 
observable in the data available for learning.

Question: If a variable (disease) is not observed, why not construct 
a model without it?

Answer: Hidden variables can dramatically reduce the number of 
parameters required to specify a Bayesian network. This results in 
the reduction of needed amount of data for learning.

 Fig. 20.7 from 708 parameters to 78.
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EM: Learning mixtures of Gaussians
The unsupervised clustering problem (Fig 20.8 with 3 components): P(x) = 
k

i=1P(C=i)P(x|C=i)
 If we knew which component generated each xj, we can get ,

 If we knew the parameters of each component, we know which ci should xj 

belong to. However, we do not know either, …

EM – expectation and maximization
 Pretend we know the parameters of the model and then to infer the probability 

that each xj belongs to each component; iterate until convergence. 

For the mixture of Gaussians, initialize the mixture model parameters 
arbitrarily; and iterate the following
 E-step: Compute pij = P(C=i|xj) = αP(xj|C=i)P(C=i)

P(C=i) = pi =  j pij

 M-step:  Compute the new i = j pijxj/pi, i pijxjxj
T/pi, wi = pi (component 

weight)
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E-step computes the expected value pij of the hidden indicator 
variables Zij, where Zij is 1 if xj was generated by i-th component, 0 
otherwise

M-step finds the new values of the parameters that maximize the log 
likelihood of the data, given the expected values of Zij

Fig 20.8(c) is learned from Fig. 20.8(a)

 Fig 20.9(a) plots the log likelihood of the data as EM progresses
 EM increases the log likelihood of the data at each iteration. 

 EM can reach a local maximum in likelihood. 
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EM: Learning Bayesian networks with hidden 
variables

Fig 20.10: two bags of mixed candies described by 3 features: 
Flavor, Wrapper, and Hole

 The candy distribution is described by a naïve Bayes: the features are 
independent, given the bag

 The parameters are: Θ – the probability that a candy from bag 1; ΘF1

and ΘF2 – the probabilites that the flavor is cherry given that a candy 
from bag 1 and bag2; ΘW1 and ΘW2 for red wrapper from bag1 and bag 
2; and ΘH1 and ΘH2 that the candy has a hole from bag1 and bag2. 

EM details are …
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Instance-based Learning
Parametric vs. nonparametric learning

 Learning focuses on fitting the parameters of a restricted family of probability 
models to an unrestricted data set

 Parametric learning methods are often simple and effective, but can oversimplify 
what’s really happening

 Nonparametric learning allows the hypothesis complexity to grow with the data

 IBL is nonparametric as it constructs hypotheses directly from the training data.
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Nearest-neighbor models
The key idea: Neighbors are similar

 Density estimation example: estimate x’s probability density by the 
density of its neighbors

 Connecting with table lookup, NBC, decision trees, …

How define neighborhood N

 If too small, no any data points

 If too big, density is the same everywhere

 A solution is to define N to contain k points, where k is large enough to 
ensure a meaningful estimate
 For a fixed k, the size of N varies (Fig 21.12)

 The effect of size of k (Figure 21.13)

 For most low-dimensional data, k is usually between 5-10
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K-NN for a given query x
Which data point is nearest to x?
 We need a distance metric, D(x1, x2)

 Euclidean distance DE is a popular one

 When each dimension measures something different, it is inappropriate to use DE (Why?)

 Important to standardize the scale for each dimension
 Mahalanobis distance is one solution

 Discrete features should be dealt with differently
 Hamming distance

Use k-NN to predict

High dimensionality poses another problem
 The nearest neighbors are usually a long way away!

 A d-dimensional hypercube of side b  1, its volume is bd, given N data points, for each neighborhood 
to have k points, how big is b?
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Summary
Bayesian learning formulates learning as a form of probabilistic inference, 
using the observations to update a prior distribution over hypotheses. 

Maximum a posteriori (MAP) selects a single most likely hypothesis given 
the data.

Maximum likelihood simply selects the hypothesis that maximizes the 
likelihood of the data (= MAP with a uniform prior).

EM can find local maximum likelihood solutions for hidden variables.

Instance-based models use the collection of data to represent a distribution.
 Nearest-neighbor method


