

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical) Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER APPLICATIONS

COURSE

23CAE717 Cloud Computing UNIT II

Virtualization

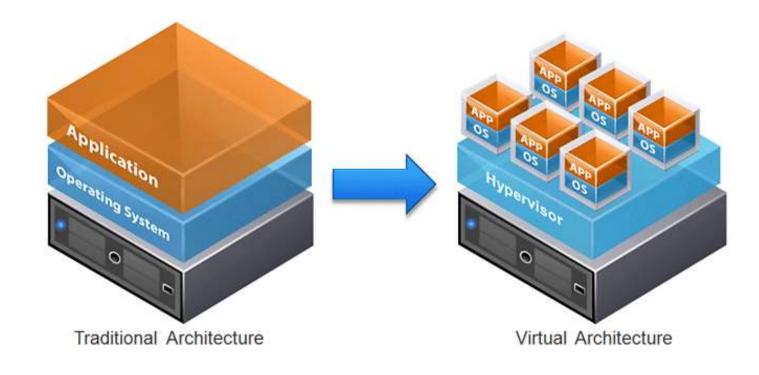
TOPIC

Basics of Virtualization

Semester

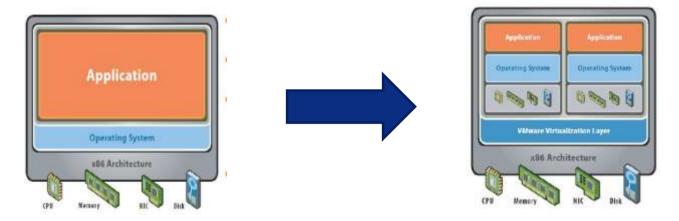
II Semester /

Unit Outline



- Basics of Virtualization
- Types of Virtualization
- ☐ Implementation Levels of Virtualization
- ☐ Virtualization Structures Tools & Mechanisms
- Virtualization of CPU, Memory, I/O Devices
- ☐ Virtual Clusters and Resource management
- ☐ Virtualization for Data-center Automation

Basics of Virtualization



- ☐ Technology to transfer hardware into software
- Allow you to run multiple OS as virtual machines in one computer

Before Virtualization

After Virtualization

Basics of Virtualization

- Software Developing
- Application monitoring
- Network management
- Server management
- Security management
- Data management
- Too many CO2

- Software as a Service
- Platform as a Service
- Infrastructure as a Service
- Data as a Service
- IT as a Service
- Green IT

Basics of Virtualization

- ☐ Ability to run multiple OS on a single physical system
- ☐ share the underlying hardware resources
- □ Virtual environment can be a single instance or a combination of many such as OS, Network or application servers, computing environments, storage devices and other such environments
- Improves IT throughput

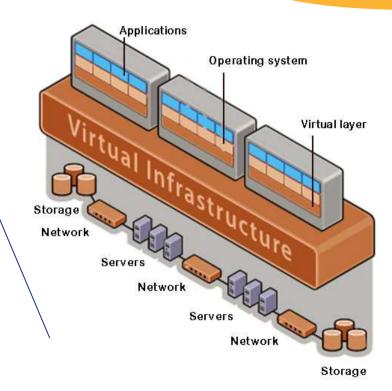
Virtualization refers act of creating virtual version of something

Virtualization Structures

VM is an isolated runtime environment (guest OS and applications)
Multiple VMs can run on a single physical system
Hypervisor/VM Monitor (VMM), is a program that allows multiple OS to share a single hardware host
Each guest OS appears to have the host's processor, memory, and other resources all to itself.
However, the hypervisor is actually controlling the host processor and resources, allocating what is needed to each operating system in turn and
It ensures that the guest operating systems (called virtual machines) cannot disrupt each other

Benefits of Virtualization

	Sharing of resources helps cost reduction	
	Centralized management	
	Isolation: Virtual machines are isolated from each other as if they are	
physically separated		
	Encapsulation : Virtual machines encapsulate a complete computing vironment	
	Hardware Independence: Virtual machines run independently of underlying dware	
	Portability: Virtual machines can be migrated between different hosts	


- Partition
 - Multiple VMs utilizes physical system by partitioning the accessible assets
- Isolation
 - Each VM is segregated from other physical system and virtualized resources
- Encapsulation
 - Viewed as a package of resources

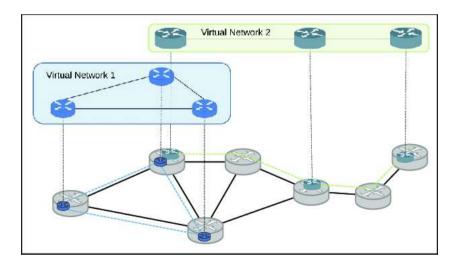
Traditional Vs Virtualization

TYPES OF VIRTUALIZATION

Hardware Virtualization

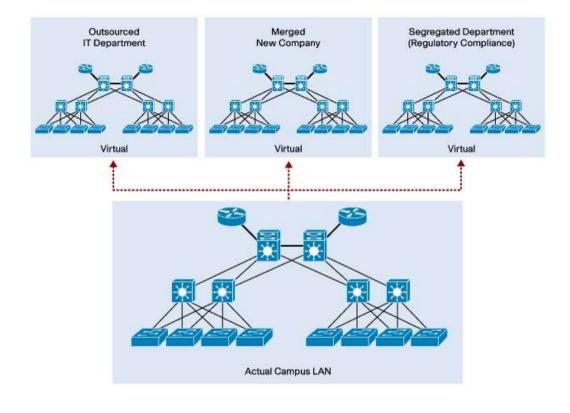
Hardware Virtualization

- Common type provides hardware utilization
- Basic idea is to combine many small physical servers into one large physical server
- Hypervisor controls all peripherals
 - Full virtualization
 - Para virtualization
 - Partial virtualization



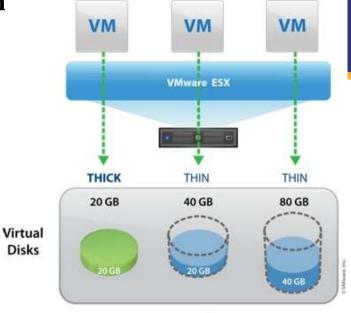
Network Virtualization

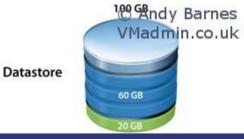
Refers to the management and monitoring of a computer network as a single managerial entity from a single software-based administrator's console


- ☐ Automates many network administrative tasks
- useful for networks experiencing a huge, rapid, and unpredictable increase of usage

Network Virtualization

Storage Virtualization


- ☐ Multiple network storage resources are present as a single storage device for easier and more efficient management of these resources
- ☐ Improved storage management in a heterogeneous IT environment
- ☐ Easy updates, better availability
- ☐ Reduced downtime
- Better storage utilization
- ☐ Automated management



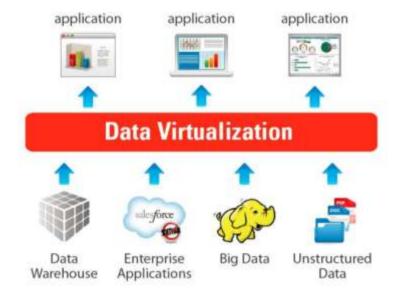
Memory Virtualization

SIS

- ☐ Decouple memory from the server
- provides a shared, distributed or networked
- function
- It may integrate in
 - Application-level
 - OS-level

Software Virtualization

- Ability to the main computer to run and create one or more virtual environments.
- ☐ Used to enable a complete computer system in order to allow a guest OS to run



Data Virtualization

☐ Easily manipulate data and know how it is formatted or where it is physically located

Desktop Virtualization

- Provides the work convenience and security
- As one can access remotely, you are able to work from any location and on any PC

References

- ☐ Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012
- ☐ James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- ☐ Kumar Saurabh, "Cloud Computing insights into New-Era Infrastructure", Wiley India, 2011.
- ☐ Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH, 2009.
- ☐ John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 201

