

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical) Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER APPLICATIONS

COURSE

23CAE717 Cloud Computing

UNIT II

Virtualization

TOPIC

Implementation levels of Virtualization

Semester

II Semester /

Implementation level of Virtualization

- ☐ Main function of Hypervisor is virtualize the physical hardware of a host machine into virtual resources to be used by the VMs, exclusively
- ☐ Virtualization can be implemented at
 - Instruction set architecture (ISA) level
 - Hardware level
 - Operating system level
 - Library support level
 - Application level

Implementation level of Virtualization

Application level JVM / .NET CLR / Panot Library (user-level API) level WINE/ WABI/ LxRun / Visual MainWin / vCUDA Operating system level Jail / Virtual Environment / Ensim's VPS / FVM Hardware abstraction layer (HAL) level VMware / Virtual PC / Denali / Xen / L4 / Plex 86 / User mode Linux / Cooperative Linux Instruction set architecture (ISA) level Bochs / Crusoe / QEMU / BIRD / Dynamo

Instruction set Architecture (ISA)

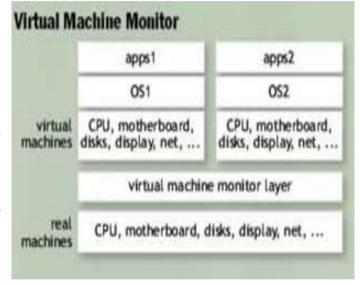
Emulating a given ISA by the ISA of the host machine.

• e.g, Binary code can run on an x-86-based host machine with the help of ISA emulation.

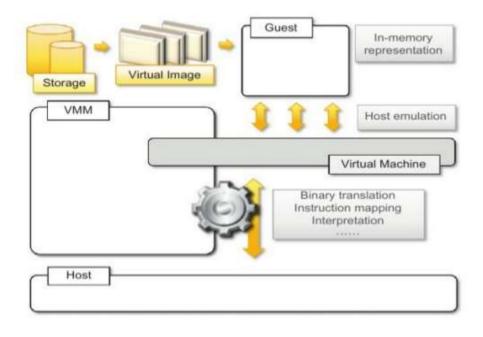
Advantage:

- It can run a large amount of legacy binary codes written for various processors on any given new hardware host machines
- Best application flexibility

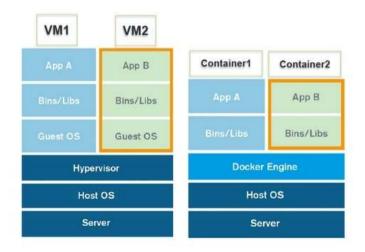
Shortcoming & limitation:


- One source instruction may require tens / hundreds of native target instructions to perform its function, which is relatively slow.
- V-ISA requires adding a processor-specific software translation layer in the complier

Hardware level of Virtualization

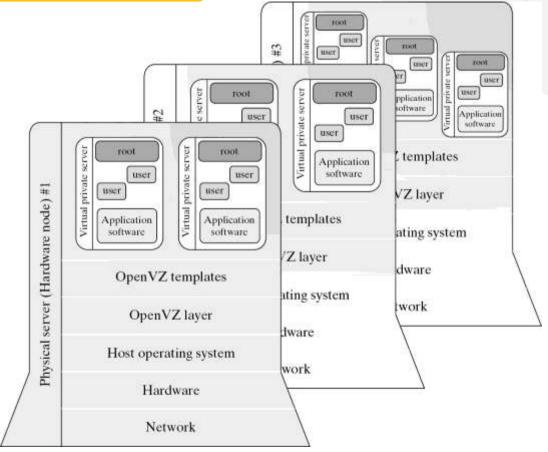

- ☐ Performed right on top of the bare hardware
- ☐ process manages the underlying hardware through virtualization
- ☐ idea is to virtualize a computer's resources, such as its **processors**, **memory**, **and I/O devices**
- ☐ Xen hypervisor used to virtualize x86-based machines to run Linux/other guest OS applications

Hardware-level virtualization



OS level of Virtualization

- ☐ An abstraction layer between **traditional OS and user applications**
- ☐ creates isolated containers on a single physical server and the OS instances to utilize the hardware and software in data centers
- containers behave like real servers



OS level of Virtualization

Virtualization for Linux and Windows NT Platforms

Library level of Virtualization

- ☐ Most applications use APIs exported by user-level libraries
- ☐ Virtualization with library interfaces is possible by **controlling the communication link between applications and the rest of a system through API** hooks
- ☐ WINE for windows applications on Linux/UNIX host

User Application level of Virtualization

Ч	Also known as process-level virtualization					
	popular approach is to deploy high level language (HLL) VMs.					
anc	In this scenario, the layer sits as an application program on top of the operating system nd the layer exports an abstraction of a VM that can run programs written and compiled to a articular abstract machine definition					
	Example .NET CLR and JVM					
	Other forms of application-level virtualization are known as application isolation blication sandboxing, or application streaming.					

Comparison

Implementation level	Performance	Impl. Complexity	Application flexibility	Application isolation
ISA	Very poor	Medium	Excellent	Medium
Hardware	Excellent	High	Medium	Very Good
OS	Excellent	Medium	Low	Very Poor
Application	Medium	Low	Low	Very Poor
Library	Poor	High	Low	Excellent

Design Requirements

- ☐ VMM should provide an environment for programs which is essentially identical to the original machine
- programs run in this environment should show, at worst, only minor decreases in speed
- a VMM should be in complete control of the system resources

Virtualization Support @ OS Level

- ☐ It is slow to initialize a hardware-level VM because each VM creates its own image from scratch and storage of such images are also slow
- □ OS-level virtualization provides a feasible solution for these hardware-level
- ☐ It enables multiple isolated VMs within a single operating system kernel
- □ Virtual Environment (VE) has its own set of processes, file system, user accounts, network interfaces with IP addresses, routing tables, firewall rules, and other personal settings
- □ Advantages
 - VMs @ OS level have minimal startup/shutdown costs, low resource requirements, and high Scalability
 - It is possible for a VM and its host environment to synchronize state changes when necessary

References

☐ Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing,

- From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012

 James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.

 Kumar Saurabh, "Cloud Computing insights into New-Era Infrastructure", Wiley India, 2011.

 Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical
- ☐ John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 201

Approach", TMH, 2009.