
 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 1

EMBEDDED SYSTEM DESIGN

UNIT-V

RTOS Based Embedded System Design

N.SURESH

Department of ECE

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 2

OS manages

resources and

available to

the system

makes them

the user

applications/tasks on a need basis

The primary functions of an Operating system is

➢ Make the system convenient to use

➢ Organize and manage the system resources efficiently and correctly

User Applications
 Application Programming

Interface (API)

Underlying Hardware

Device Driver

Interface

I/O System Management

File System Management

Time Management

Process Management

Memory Management

Operating System Basics:

• The Operating System acts as a bridge between the user applications/tasks

and the underlying system resources through a set of system functionalities

and services

•

•

Figure 1: The Architecture of Operating System

K
e

r
n

e
l

S
e

r
v

ic
e

s

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 3

The Kernel:

• The kernel is the core of the operating system

• It is responsible for managing the system resources and the communication

among the hardware and other system services

• Kernel acts as the abstraction layer between system resources and user

applications

• Kernel contains a set of system libraries and services.

• For a general purpose OS, the kernel contains different services like

➢ Process Management

➢ Primary Memory Management

➢ File System management

➢ I/O System (Device) Management

➢ Secondary Storage Management

➢ Protection

➢ Time management

➢ Interrupt Handling

Kernel Space and User Space:

• The program code corresponding to the kernel applications/services are kept

in a contiguous area (OS dependent) of primary (working) memory and is

protected from the un-authorized access by user programs/applications

• The memory space at which the kernel code is located is known as ‘Kernel

Space’

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 4

• All user applications are loaded to a specific area of primary memory and

this memory area is referred as ‘User Space’

• The partitioning of memory into kernel and user space is purely Operating

System dependent

• An operating system with virtual memory support, loads the user

applications into its corresponding virtual memory space with demand

paging technique

• Most of the operating systems keep the kernel application code in main

memory and it is not swapped out into the secondary memory

Monolithic Kernel:

• All kernel services run in the kernel space

• All kernel modules run within the same memory space under a single kernel

thread

• The tight internal integration of kernel modules in monolithic kernel

architecture allows the effective

utilization of the low-level features of

the underlying system

• The major drawback of monolithic

kernel is that any error or failure in

any one of the kernel modules leads to

the crashing of the entire kernel

application

• LINUX, SOLARIS, MS-DOS kernels

are examples of monolithic kernel

Applications

Monolithic kernel with all

operating system services

running in kernel space

Figure 2: The Monolithic Kernel Model

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 5

Microkernel

• The microkernel design incorporates only the essential set of Operating

System services into the kernel

• Rest of the Operating System services are implemented in programs known

as ‘Servers’ which runs in user space

• The kernel design is highly

modular provides OS-neutral

abstraction.

• Memory management, process

Servers (kernel

services running

in user space)

Applications

management, timer systems and

interrupt handlers are examples of

essential services, which forms the part

of the microkernel

Microkernel with essential

services like memory

management, process

management, timer systemetc...

Figure 3: The Microkernel Model

• QNX, Minix 3 kernels are examples for microkernel.

Benefits of Microkernel:

1. Robustness: If a problem is encountered in any services in server can

reconfigured and re-started without the need for re-starting the entire OS.

2. Configurability: Any services , which run as ‘server’ application can be

changed without need to restart the whole system.

Types of Operating Systems:

Depending on the type of kernel and kernel services, purpose and type of

computing systems where the OS is deployed and the responsiveness to

applications, Operating Systems are classified into

1. General Purpose Operating System (GPOS):

2. Real Time Purpose Operating System (RTOS):

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 6

1. General Purpose Operating System (GPOS):

• Operating Systems, which are deployed in general computing systems

• The kernel is more generalized and contains all the required services to

execute generic applications

• Need not be deterministic in execution behavior

• May inject random delays into application software and thus cause slow

responsiveness of an application at unexpected times

• Usually deployed in computing systems where deterministic behavior is not

an important criterion

• Personal Computer/Desktop system is a typical example for a system where

GPOSs are deployed.

• Windows XP/MS-DOS etc are examples of General Purpose Operating

System

2. Real Time Purpose Operating System (RTOS):

• Operating Systems, which are deployed in embedded systems demanding

real-time response

• Deterministic in execution behavior. Consumes only known amount of time

for kernel applications

• Implements scheduling policies for executing the highest priority

task/application always

• Implements policies and rules concerning time-critical allocation of a

system’s resources

• Windows CE, QNX, VxWorks , MicroC/OS-II etc are examples of Real

Time Operating Systems (RTOS)

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 7

The Real Time Kernel: The kernel of a Real Time Operating System is referred

as Real Time kernel. In complement to the conventional OS kernel, the Real Time

kernel is highly specialized and it contains only the minimal set of services

required for running the user applications/tasks. The basic functions of a Real Time

kernel are

a) Task/Process management

b) Task/Process scheduling

c) Task/Process synchronization

d) Error/Exception handling

e) Memory Management

f) Interrupt handling

g) Time management

• Real Time Kernel Task/Process Management: Deals with setting up the

memory space for the tasks, loading the task’s code into the memory space,

allocating system resources, setting up a Task Control Block (TCB) for the task

and task/process termination/deletion. A Task Control Block (TCB) is used for

holding the information corresponding to a task. TCB usually contains the

following set of information

❖ Task ID: Task Identification Number

❖ Task State: The current state of the task. (E.g. State= ‘Ready’ for a task

which is ready to execute)

❖ Task Type: Task type. Indicates what is the type for this task. The task can

be a hard real time or soft real time or background task.

❖ Task Priority: Task priority (E.g. Task priority =1 for task with priority = 1)

❖ Task Context Pointer: Context pointer. Pointer for context saving

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 8

❖ Task Memory Pointers: Pointers to the code memory, data memory and

stack memory for the task

❖ Task System Resource Pointers: Pointers to system resources (semaphores,

mutex etc) used by the task

❖ Task Pointers: Pointers to other TCBs (TCBs for preceding, next and

waiting tasks)

❖ Other Parameters Other relevant task parameters

The parameters and implementation of the TCB is kernel dependent. The TCB

parameters vary across different kernels, based on the task management

implementation

• Task/Process Scheduling: Deals with sharing the CPU among various

tasks/processes. A kernel application called ‘Scheduler’ handles the task

scheduling. Scheduler is nothing but an algorithm implementation, which

performs the efficient and optimal scheduling of tasks to provide a deterministic

behavior.

Task/Process Synchronization: Deals with synchronizing the concurrent

access of a resource, which is shared across multiple tasks and the

communication between various tasks.

Error/Exception handling: Deals with registering and handling the errors

occurred/exceptions raised during the execution of tasks. Insufficient memory,

timeouts, deadlocks, deadline missing, bus error, divide by zero, unknown

instruction execution etc, are examples of errors/exceptions. Errors/Exceptions

can happen at the kernel level services or at task level. Deadlock is an example

for kernel level exception, whereas timeout is an example for a task level

exception. The OS kernel gives the information about the error in the form of a

system call (API).

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 9

Memory Management:

❖ The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems

❖ The memory allocation time increases depending on the size of the block

of memory needs to be allocated and the state of the allocated memory

block (initialized memory block consumes more allocation time than un-

initialized memory block)

❖ Since predictable timing and deterministic behavior are the primary focus

for an RTOS, RTOS achieves this by compromising the effectiveness of

memory allocation

❖ RTOS generally uses ‘block’ based memory allocation technique, instead

of the usual dynamic memory allocation techniques used by the GPOS.

❖ RTOS kernel uses blocks of fixed size of dynamic memory and the block

is allocated for a task on a need basis. The blocks are stored in a ‘Free

buffer Queue’.

❖ Most of the RTOS kernels allow tasks to access any of the memory

blocks without any memory protection to achieve predictable timing and

avoid the timing overheads

❖ RTOS kernels assume that the whole design is proven correct and

protection is unnecessary. Some commercial RTOS kernels allow

memory protection as optional and the kernel enters a fail-safe mode

when an illegal memory access occurs

❖ The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems

❖ A few RTOS kernels implement Virtual Memory concept for memory

allocation if the system supports secondary memory storage (like HDD

and FLASH memory).

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 10

❖ In the ‘block’ based memory allocation, a block of fixed memory is

always allocated for tasks on need basis and it is taken as a unit. Hence,

there will not be any memory fragmentation issues.

❖ The memory allocation can be implemented as constant functions and

thereby it consumes fixed amount of time for memory allocation. This

leaves the deterministic behavior of the RTOS kernel untouched.

Interrupt Handling:

❖ Interrupts inform the processor that an external device or an associated

task requires immediate attention of the CPU.

❖ Interrupts can be either Synchronous or Asynchronous.

❖ Interrupts which occurs in sync with the currently executing task is known

as Synchronous interrupts. Usually the software interrupts fall under the

Synchronous Interrupt category. Divide by zero, memory segmentation

error etc are examples of Synchronous interrupts.

❖ For synchronous interrupts, the interrupt handler runs in the same context

of the interrupting task.

❖ Asynchronous interrupts are interrupts, which occurs at any point of

execution of any task, and are not in sync with the currently executing

task.

❖ The interrupts generated by external devices (by asserting the Interrupt

line of the processor/controller to which the interrupt line of the device is

connected) connected to the processor/controller, timer overflow

interrupts, serial data reception/ transmission interrupts etc are examples

for asynchronous interrupts.

❖ For asynchronous interrupts, the interrupt handler is usually written as

separate task (Depends on OS Kernel implementation) and it runs in a

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 11

different context. Hence, a context switch happens while handling the

asynchronous interrupts.

❖ Priority levels can be assigned to the interrupts and each interrupts can be

enabled or disabled individually.

❖ Most of the RTOS kernel implements ‘Nested Interrupts’ architecture.

Interrupt nesting allows the pre-emption (interruption) of an Interrupt

Service Routine (ISR), servicing an interrupt, by a higher priority

interrupt.

Time Management:

❖ Interrupts inform the processor that an external device or an associated

task requires immediate attention of the CPU.

❖ Accurate time management is essential for providing precise time

reference for all applications

❖ The time reference to kernel is provided by a high-resolution Real Time

Clock (RTC) hardware chip (hardware timer)

❖ The hardware timer is programmed to interrupt the processor/controller

at a fixed rate. This timer interrupt is referred as ‘Timer tick’

❖ The ‘Timer tick’ is taken as the timing reference by the kernel. The

‘Timer tick’ interval may vary depending on the hardware timer. Usually

the ‘Timer tick’ varies in the microseconds range

❖ The time parameters for tasks are expressed as the multiples of the

‘Timer tick’

❖ The System time is updated based on the ‘Timer tick’

❖ If the System time register is 32 bits wide and the ‘Timer tick’ interval is

1microsecond, the System time register will reset in

232 * 10-6/ (24 * 60 * 60) = 49700 Days =~ 0.0497 Days = 1.19 Hours

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 12

If the ‘Timer tick’ interval is 1 millisecond, the System time register will

reset in

232 * 10-3 / (24 * 60 * 60) = 497 Days = 49.7 Days =~ 50 Days

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel.

The ‘Timer tick’ interrupt can be utilized for implementing the following

actions.

• Save the current context (Context of the currently executing task)

• Increment the System time register by one. Generate timing error and reset

the System time register if the timer tick count is greater than the maximum

range available for System time register

• Update the timers implemented in kernel (Increment or decrement the timer

registers for each timer depending on the count direction setting for each

register. Increment registers with count direction setting = ‘count up’ and

decrement registers with count direction setting = ‘count down’)

• Activate the periodic tasks, which are in the idle state

• Invoke the scheduler and schedule the tasks again based on the scheduling

algorithm

• Delete all the terminated tasks and their associated data structures (TCBs)

• Load the context for the first task in the ready queue. Due to the re-

scheduling, the ready task might be changed to a new one from the task,

which was pre-empted by the ‘Timer Interrupt’ task

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 13

Hard Real-time System:

❖ A Real Time Operating Systems which strictly adheres to the timing

constraints for a task

❖ A Hard Real Time system must meet the deadlines for a task without any

slippage

❖ Missing any deadline may produce catastrophic results for Hard Real

Time Systems, including permanent data lose and irrecoverable damages

to the system/users

❖ Emphasize on the principle ‘A late answer is a wrong answer’

❖ Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles

are typical examples of Hard Real Time Systems

❖ As a rule of thumb, Hard Real Time Systems does not implement the

virtual memory model for handling the memory. This eliminates the

delay in swapping in and out the code corresponding to the task to and

from the primary memory

❖ The presence of Human in the loop (HITL) for tasks introduces un-

expected delays in the task execution. Most of the Hard Real Time

Systems are automatic and does not contain a ‘human in the loop’

• Soft Real-time System:

❖ Real Time Operating Systems that does not guarantee meeting deadlines,

but, offer the best effort to meet the deadline

❖ Missing deadlines for tasks are acceptable if the frequency of deadline

missing is within the compliance limit of the Quality of Service (QoS)

❖ A Soft Real Time system emphasizes on the principle ‘A late answer is an

acceptable answer, but it could have done bit faster’

❖ Soft Real Time systems most often have a ‘human in the loop (HITL)’

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 14

❖ Automatic Teller Machine (ATM) is a typical example of Soft Real Time

System. If the ATM takes a few seconds more than the ideal operation

time, nothing fatal happens.

❖ An audio video play back system is another example of Soft Real Time

system. No potential damage arises if a sample comes late by fraction of a

second, for play back.

Tasks, Processes & Threads :

▪ In the Operating System context, a task is defined as the program in

execution and the related information maintained by the Operating

system for the program

▪ Task is also known as ‘Job’ in the operating system context

▪ A program or part of it in execution is also called a ‘Process’

▪ The terms ‘Task’, ‘job’ and ‘Process’ refer to the same entity in the

Operating System context and most often they are used interchangeably

▪ A process requires various system resources like CPU for executing the

process, memory for storing the code corresponding to the process and

associated variables, I/O devices for information exchange etc

The structure of a Processes

▪ The concept of ‘Process’ leads to concurrent execution (pseudo parallelism)

of tasks and thereby the efficient utilization of the CPU and other system

resources

▪ Concurrent execution is achieved through the sharing of CPU among the

processes.

▪ A process mimics a processor in properties and holds a set of registers,

process status, a Program Counter (PC) to point to the next executable

instruction of the process, a stack for holding the local variables associated

with the process and the code corresponding to the process

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 15

Code Memory

corresponding to the

Process

Process

▪ A process, which inherits all

the properties of the CPU,

can be considered as a

virtual processor, awaiting

its turn to have its properties

switched into the physical

processor

Figure: 4 Structure of a Process

• When the process gets its turn, its registers and Program counter register

becomes mapped to the physical registers of the CPU

Memory organization of Processes:

▪ The memory occupied by the process is

segregated into three regions namely; Stack

memory, Data memory and Code memory

▪ The ‘Stack’ memory holds all temporary

data such as variables local to the process

▪ Data memory holds all global data for the

process

▪ The code memory contains the program

code (instructions) corresponding to the

process

Stack Memory

Stack memory grows

downwards

Data memory grows

upwards

Data Memory

Code Memory

Fig: 5 Memory organization of a Process

Stack

(Stack Pointer)

Working Registers

Status Registers

Program Counter (PC)

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 16

▪ On loading a process into the main memory, a specific area of memory is

allocated for the process

▪ The stack memory usually starts at the highest memory address from the

memory area allocated for the process (Depending on the OS kernel

implementation)

Process States & State Transition

▪ The creation of a process to its termination is not a single step operation

▪ The process traverses through a series of states during its transition from the

newly created state to the terminated state

▪ The cycle through which a process changes its state from ‘newly created’ to

‘execution completed’ is known as ‘Process Life Cycle’. The various states

through which a process traverses through during a Process Life Cycle

indicates the current status of the process with respect to time and also

provides information on what it is allowed to do next

Process States & State Transition:

• Created State: The state at which a process is being created is referred as

‘Created State’. The Operating System recognizes a process in the ‘Created

State’ but no resources are allocated to the process

• Ready State: The state, where a process is incepted into the memory and

awaiting the processor time for execution, is known as ‘Ready State’. At

this stage, the process is placed in the ‘Ready list’ queue maintained by the

OS

• Running State: The state where in the source code instructions

corresponding to the process is being executed is called ‘Running State’.

Running state is the state at which the process execution happens

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 17

▪ . Blocked State/Wait State: Refers

to a state where a running process is

temporarily suspended from

execution and does not have

immediate access to resources. The

blocked state might have invoked by

various conditions like- the process

enters a wait state for an event to

occur (E.g. Waiting for user inputs

such as keyboard input) or waiting

for getting access to a shared

resource like semaphore, mutex etc

Blocked

Created

Incepted into memory

Ready

Running

Execution Completion

Completed

Figure 6.Process states and State transition

▪ Completed State: A state where the process completes its execution

 The transition of a process from one state to another is known as

‘Statetransition’

 When a process changes its state from Ready to running or from

running toblocked or terminated or from blocked to running, the CPU

allocation for the process may also change

Threads

• A thread is the primitive that can execute code

• A thread is a single sequential flow of control within a process

• ‘Thread’ is also known as lightweight process

• A process can have many threads of execution

S
c
h
e

d
u
le

d
 fo

r

E
x
e

c
u

tio
n

 I
n
te

rr
u

p
te

d
 o

r

P
re

e
m

p
te

d

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 18

• Different threads, which are part of a

process, share the same address space;

meaning they share the data memory,

code memory and heap memory area

• Threads maintain their own thread status

(CPU register values), Program Counter

(PC) and stack

Figure 7 Memory organization of process and its associated Threads

The Concept of multithreading

Use of multiple threads to execute a process brings the following advantage.

• Better memory utilization.

Multiple threads of the same

process share the address space

for data memory. This also

reduces the complexity of inter

thread communication since

variables can be shared across the

threads.

• Since the process is split into

different threads, when one

thread enters a wait state, the

CPU can be utilized by other

Stack

Registers

Thread 1

void main (void)

{

//Create child

thread 1

CreateThread(NULL,

1000,(LPTHREAD_STA

RT_ROUTINE)

ChildThread1,NULL,

0, &dwThreadID);

//Create child

thread 2

CreateThread(NULL,

1000,(LPTHREAD_STA

RT_ROUTINE)

ChildThread2,NULL,

0, &dwThreadID);

}

Task/Process

Code Memory

Data Memory

Stack

Registers

Thread 2

int ChildThread1

(void)

{

//Do something

}

Stack

Registers

Thread 3

int ChildThread2

(void)

{

//Do something

}

Figure 8 Process with multi-threads

• threads of the process that do not require the event, which the other thread is

waiting, for processing. This speeds up the execution of the process.

• Efficient CPU utilization. The CPU is engaged all time.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 19

Thread V/s Process

Thread Process

Thread is a single unit of execution and is part

of process.

Process is a program in execution and contains

one or more threads.

A thread does not have its own data memory

and heap memory. It shares the data memory

and heap memory with other threads of the

same process.

Process has its own code memory, data memory

and stack memory.

A thread cannot live independently; it lives

within the process.

A process contains at least one thread.

There can be multiple threads in a process.

The first thread (main thread) calls the main

function and occupies the start of the stack

memory of the process.

Threads within a process share the code, data

and heap memory. Each thread holds separate

memory area for stack (shares the total stack

memory of the process).

Threads are very inexpensive to create Processes are very expensive to create. Involves

many OS overhead.

Context switching is inexpensive and fast Context switching is complex and involves lot of

OS overhead and is comparatively slower.

If a thread expires, its stack is reclaimed by the

process.

If a process dies, the resources allocated to it are

reclaimed by the OS and all the associated

threads of the process also dies.

Advantages of Threads:

1. Better memory utilization: Multiple threads of the same process share the

address space for data memory. This also reduces the complexity of inter

thread communication since variables can be shared across the threads.

2. Efficient CPU utilization: The CPU is engaged all time.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 20

3. Speeds up the execution of the process: The process is split into different

threads, when one thread enters a wait state, the CPU can be utilized by

other threads of the process that do not require the event, which the other

thread is waiting, for processing.

Multiprocessing & Multitasking

• The ability to execute multiple processes simultaneously is referred as

multiprocessing

• Systems which are capable of performing multiprocessing are known as

multiprocessor systems

• Multiprocessor systems possess multiple CPUs and can execute multiple

processes simultaneously

• The ability of the Operating System to have multiple programs in memory,

which are ready for execution, is referred as multiprogramming

• Multitasking refers to the ability of an operating system to hold multiple

processes in memory and switch the processor (CPU) from executing one

process to another process

• Multitasking involves ‘Context switching’, ‘Context saving’ and ‘Context

retrieval’

• Context switching refers to the switching of execution context from task to

other

• When a task/process switching happens, the current context of execution

should be saved to (Context saving) retrieve it at a later point of time when

the CPU executes the process, which is interrupted currently due to

execution switching

• During context switching, the context of the task to be executed is retrieved

from the saved context list. This is known as Context retrieval

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 21

Multitasking – Context Switching:

Process 2

Process 1

▪

Types of Multitasking :

Depending on how the task/process execution switching act is implemented,

multitasking can is classified into

Idle

Running

Time

Figure 9 Context Switching

Multiprogramming: The ability of the Operating System to have multiple

programs in memory, which are ready for execution, is referred as

multiprogramming.

Running Idle Waits in ‘Ready’ Queue Running

dy’ Queue Waits in ‘Re Running Idle

Delay in execution of

Process 1 happened

due to ‘Context

Switching’

Delay in execution of

Process 2 happened

due to ‘Context

Switching’

P
ro

c
e

s
s
e

s

E
x
e

c
u

ti
o

n
 s

w
it
c
h

e
s
 t
o

 P
ro

c
e

s
s
 2

(I
n

te
rr

u
p

t
o

r
S

y
s
te

m
 C

a
ll
)

1
.

S
a

v
e

 C
u

rr
e

n
t

c
o

n
te

x
t
in

to
 P

C
B

0

2
.

P
e

rf
o

rm
 o

th
e

r
O

S
 o

p
e

ra
ti
o

n
s
 r

e
la

te
d

 t
o

‘C
o

n
te

x
t
S

w
it
c
h

in
g

’

3
.

R
e

lo
a

d
 C

o
n

te
x
t
fo

r
P

ro
c
e

s
s
 2

 f
ro

m

P

C
B

1

E
x
e

c
u

ti
o

n
 s

w
it
c
h

e
s
 t
o

 P
ro

c
e

s
s
 1

(I
n

te
rr

u
p

t
o

r
S

y
s
te

m
 C

a
ll
)

1
.

S
a

v
e

 C
u

rr
e

n
t

c
o

n
te

x
t
in

to
 P

C
B

1

2
.

P
e

rf
o

rm
 o

th
e

r
O

S
 o

p
e

ra
ti
o

n
s
 r

e
la

te
d

 t
o

‘C
o

n
te

x
t
S

w
it
c
h

in
g

’

3
.

R
e

lo
a

d
 C

o
n

te
x
t
fo

r
P

ro
c
e

s
s
 1

 f
ro

m

P

C
B

0

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 22

• Co-operative Multitasking: Co-operative multitasking is the most primitive

form of multitasking in which a task/process gets a chance to execute only

when the currently executing task/process voluntarily relinquishes the CPU.

In this method, any task/process can avail the CPU as much time as it wants.

Since this type of implementation involves the mercy of the tasks each other

for getting the CPU time for execution, it is known as co-operative

multitasking. If the currently executing task is non-cooperative, the other

tasks may have to wait for a long time to get the CPU

• Preemptive Multitasking: Preemptive multitasking ensures that every

task/process gets a chance to execute. When and how much time a process

gets is dependent on the implementation of the preemptive scheduling. As

the name indicates, in preemptive multitasking, the currently running

task/process is preempted to give a chance to other tasks/process to execute.

The preemption of task may be based on time slots or task/process priority

• Non-preemptive Multitasking: The process/task, which is currently given the

CPU time, is allowed to execute until it terminates (enters the ‘Completed’

state) or enters the ‘Blocked/Wait’ state, waiting for an I/O. The co-

operative and non-preemptive multitasking differs in their behavior when

they are in the ‘Blocked/Wait’ state. In co-operative multitasking, the

currently executing process/task need not relinquish the CPU when it enters

the ‘Blocked/Wait’ sate, waiting for an I/O, or a shared resource access or an

event to occur whereas in non-preemptive multitasking the currently

executing task relinquishes the CPU when it waits for an I/O.

Task Scheduling:

• In a multitasking system, there should be some mechanism in place to share

the CPU among the different tasks and to decide which process/task is to be

executed at a given point of time

• Determining which task/process is to be executed at a given point of time is

known as task/process scheduling

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 23

• Task scheduling forms the basis of multitasking

• Scheduling policies forms the guidelines for determining which task is to be

executed when

• The scheduling policies are implemented in an algorithm and it is run by the

kernel as a service

• The kernel service/application, which implements the scheduling algorithm,

is known as ‘Scheduler’

• The task scheduling policy can be pre-emptive, non-preemptive or co-

operative

• Depending on the scheduling policy the process scheduling decision may

take place when a process switches its state to

➢ ‘Ready’ state from ‘Running’ state

➢ ‘Blocked/Wait’ state from ‘Running’ state
➢ ‘Ready’ state from ‘Blocked/Wait’ state

➢ ‘Completed’ state

Task Scheduling - Scheduler Selection:

The selection of a scheduling criteria/algorithm should consider

• CPU Utilization: The scheduling algorithm should always make the CPU

utilization high. CPU utilization is a direct measure of how much percentage

of the CPU is being utilized.

• Throughput: This gives an indication of the number of processes executed

per unit of time. The throughput for a good scheduler should always be

higher.

• Turnaround Time: It is the amount of time taken by a process for

completing its execution. It includes the time spent by the process for

waiting for the main memory, time spent in the ready queue, time spent on

completing the I/O operations, and the time spent in execution. The

turnaround time should be a minimum for a good scheduling algorithm.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 24

 M
o

v
e

 P
ro

c
e

s
s
 t

o
 ‘
D

e
v
ic

e
 Q

u
e

u
e

’

To summarize, a good scheduling algorithm has high CPU utilization, minimum

Turn Around Time (TAT), maximum throughput and least response time.

• Waiting Time: It is the amount of time spent by a process in the ‘Ready’

queue waiting to get the CPU time for execution. The waiting time should be

minimal for a good scheduling algorithm.

• Response Time: It is the time elapsed between the submission of a process

and the first response. For a good scheduling algorithm, the response time

should be as least as possible.

Task Scheduling - Queues

The various queues maintained by OS in association with CPU scheduling are

• Job Queue: Job queue contains all the processes in the system

• Ready Queue: Contains all the processes, which are ready for execution and

waiting for CPU to get their turn for execution. The Ready queue is empty

when there is no process ready for running.

• Device Queue: Contains the set of processes, which are waiting for an I/O

device

Task Scheduling – Task transition through various Queues

Scheduler

Process

to ‘Ready’ queue Process

Device

Manager

CPU

Process

Run Process

to Completion

Figure 10. Process TranDesviicteiQouneuethrough various queues

R
e

s
o

u
rc

e
 R

e
q

u
e

s
t

B
y
 P

ro
c
e

s
s

 Admitted

 Process 1

Process 2

Process 3

Process 4

Process n

Job Queue

Process 1

 Process 2

Move I/O C

Process to ‘R

 Process n

Ready Queue
Move preempted process

ompleted

eady’ queue

Process 1

Process 2

Process n

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 25

P1

P2 P3

Non-preemptive scheduling – First Come First Served (FCFS)/First In

First Out (FIFO) Scheduling:

• Allocates CPU time to the processes based on the order in which they enters

the ‘Ready’ queue

• The first entered process is serviced first

• It is same as any real world application where queue systems are used; E.g.

Ticketing

Drawbacks:

➢ Favors monopoly of process. A process, which does not contain any I/O

operation, continues its execution until it finishes its task

➢ In general, FCFS favors CPU bound processes and I/O bound processes may

have to wait until the completion of CPU bound process, if the currently

executing process is a CPU bound process. This leads to poor device

utilization.

➢ The average waiting time is not minimal for FCFS scheduling algorithm

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds respectively enters the ready queue together

in the order P1, P2, P3. Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes).

Solution: The sequence of execution of the processes by the CPU is represented as

0 10 15 22

10 5 7

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 26

Assuming the CPU is readily available at the time of arrival of P1, P1 starts

executing without any waiting in the ‘Ready’ queue. Hence the waiting time for P1

is zero.

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P2 = 10 ms (P2 starts executing after completing P1)

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P2+P3)) / 3

= (0+10+15)/3 = 25/3 = 8.33 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue +

Execution Time)

Turn Around Time (TAT) for P2 = 15 ms (-Do-)

Turn Around Time (TAT) for P3 = 22 ms (-Do-)

Average Turn Around Time= (Turn Around Time for all processes) / No. of

Processes

= (Turn Around Time for (P1+P2+P3)) / 3

= (10+15+22)/3 = 47/3

= 15.66 milliseconds

Non-preemptive scheduling – Last Come First Served (LCFS)/Last In

First Out (LIFO) Scheduling:

• Allocates CPU time to the processes based on the order in which they are

entered in the ‘Ready’ queue

• The last entered process is serviced first

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 27

• LCFS scheduling is also known as Last In First Out (LIFO) where the

process, which is put last into the ‘Ready’ queue, is serviced first

Drawbacks:

➢ Favors monopoly of process. A process, which does not contain any I/O

operation, continues its execution until it finishes its task

➢ In general, LCFS favors CPU bound processes and I/O bound processes may

have to wait until the completion of CPU bound process, if the currently

executing process is a CPU bound process. This leads to poor device

utilization.

➢ The average waiting time is not minimal for LCFS scheduling algorithm

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds respectively enters the ready queue together

in the order P1, P2, P3 (Assume only P1 is present in the ‘Ready’ queue when the

scheduler picks up it and P2, P3 entered ‘Ready’ queue after that). Now a new

process P4 with estimated completion time 6ms enters the ‘Ready’ queue after 5ms

of scheduling P1. Calculate the waiting time and Turn Around Time (TAT) for

each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes).Assume all the processes contain only

CPU operation and no I/O operations are involved.

Solution: Initially there is only P1 available in the Ready queue and the scheduling

sequence will be P1, P3, P2. P4 enters the queue during the execution of P1 and

becomes the last process entered the ‘Ready’ queue. Now the order of execution

changes to P1, P4, P3, and P2 as given below.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 28

P1

P4

P3

P2

0 10 16 23 28

10 6 7 5

The waiting time for all the processes are given as

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P4 = 5 ms (P4 starts executing after completing P1. But P4

arrived after 5ms of execution of P1. Hence its waiting time = Execution start time

– Arrival Time = 10-5 = 5)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (0 + 5 + 16 + 23)/4 = 44/4

= 11 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue +

Execution Time = (Execution Start Time – Arrival

Time) + Estimated Execution Time = (10-5) + 6 = 5 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P4+P3+P2)) / 4

= (10+11+23+28)/4 = 72/4

= 18 milliseconds

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 29

Non-preemptive scheduling – Shortest Job First (SJF) Scheduling.

• Allocates CPU time to the processes based on the execution completion time

for tasks

• The average waiting time for a given set of processes is minimal in SJF

scheduling

• Optimal compared to other non-preemptive scheduling like FCFS

Drawbacks:

➢ A process whose estimated execution completion time is high may not get a

chance to execute if more and more processes with least estimated execution

time enters the ‘Ready’ queue before the process with longest estimated

execution time starts its execution

➢ May lead to the ‘Starvation’ of processes with high estimated completion

time

➢ Difficult to know in advance the next shortest process in the ‘Ready’ queue

for scheduling since new processes with different estimated execution time

keep entering the ‘Ready’ queue at any point of time.

Non-preemptive scheduling – Priority based Scheduling

• A priority, which is unique or same is associated with each task

• The priority of a task is expressed in different ways, like a priority number,

the time required to complete the execution etc.

• In number based priority assignment the priority is a number ranging from 0

to the maximum priority supported by the OS. The maximum level of

priority is OS dependent.

• Windows CE supports 256 levels of priority (0 to 255 priority numbers, with

0 being the highest priority)

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 30

• The priority is assigned to the task on creating it. It can also be changed

dynamically (If the Operating System supports this feature)

• The non-preemptive priority based scheduler sorts the ‘Ready’ queue based

on the priority and picks the process with the highest level of priority for

execution

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds and priorities 0, 3, 2 (0- highest priority, 3

lowest priority) respectively enters the ready queue together. Calculate the waiting

time and Turn Around Time (TAT) for each process and the Average waiting time

and Turn Around Time (Assuming there is no I/O waiting for the processes) in

priority based scheduling algorithm.

Solution: The scheduler sorts the ‘Ready’ queue based on the priority and

schedules the process with the highest priority (P1 with priority number 0) first and

the next high priority process (P3 with priority number 2) as second and so on. The

order in which the processes are scheduled for execution is represented as

P1

P3

P2

0 10 17 22

10 7 5

The waiting time for all the processes are given as

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P3 = 10 ms (P3 starts executing after completing P1)

Waiting Time for P2 = 17 ms (P2 starts executing after completing P1 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P3+P2)) / 3

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 31

= (0+10+17)/3 = 27/3

= 9 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 17 ms (-Do-)

Turn Around Time (TAT) for P2 = 22 ms (-Do-)

Average Turn Around Time= (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P3+P2)) / 3

= (10+17+22)/3 = 49/3

= 16.33 milliseconds

Drawbacks:

➢ Similar to SJF scheduling algorithm, non-preemptive priority based

algorithm also possess the drawback of ‘Starvation’ where a process whose

priority is low may not get a chance to execute if more and more processes

with higher priorities enter the ‘Ready’ queue before the process with lower

priority starts its execution.

➢ ‘Starvation’ can be effectively tackled in priority based non-preemptive

scheduling by dynamically raising the priority of the low priority

task/process which is under starvation (waiting in the ready queue for a

longer time for getting the CPU time)

➢ The technique of gradually raising the priority of processes which are

waiting in the ‘Ready’ queue as time progresses, for preventing ‘Starvation’,

is known as ‘Aging’.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 32

Preemptive scheduling:

• Employed in systems, which implements preemptive multitasking model

• Every task in the ‘Ready’ queue gets a chance to execute. When and how

often each process gets a chance to execute (gets the CPU time) is dependent

on the type of preemptive scheduling algorithm used for scheduling the

processes

• The scheduler can preempt (stop temporarily) the currently executing

task/process and select another task from the ‘Ready’ queue for execution

• When to pre-empt a task and which task is to be picked up from the ‘Ready’

queue for execution after preempting the current task is purely dependent on

the scheduling algorithm

• A task which is preempted by the scheduler is moved to the ‘Ready’ queue.

The act of moving a ‘Running’ process/task into the ‘Ready’ queue by the

scheduler, without the processes requesting for it is known as ‘Preemption’

• Time-based preemption and priority-based preemption are the two important

approaches adopted in preemptive scheduling

Preemptive scheduling – Preemptive SJF Scheduling/ Shortest Remaining

Time (SRT):

• The non preemptive SJF scheduling algorithm sorts the ‘Ready’ queue only

after the current process completes execution or enters wait state, whereas

the preemptive SJF scheduling algorithm sorts the ‘Ready’ queue when a

new process enters the ‘Ready’ queue and checks whether the execution

time of the new process is shorter than the remaining of the total estimated

execution time of the currently executing process

• If the execution time of the new process is less, the currently executing

process is preempted and the new process is scheduled for execution

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 33

• Always compares the execution completion time (ie the remaining execution

time for the new process) of a new process entered the ‘Ready’ queue with

the remaining time for completion of the currently executing process and

schedules the process with shortest remaining time for execution.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds respectively enters the ready queue together.

A new process P4 with estimated completion time 2ms enters the ‘Ready’ queue

after 2ms. Assume all the processes contain only CPU operation and no I/O

operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3)

available in the ‘Ready’ queue and the SRT scheduler picks up the process with the

Shortest remaining time for execution completion (In this example P2 with

remaining time 5ms) for scheduling. Now process P4 with estimated execution

completion time 2ms enters the ‘Ready’ queue after 2ms of start of execution of

P2. The processes are re-scheduled for execution in the following order

P2

P4

P2

P3

P1

0 2 4 7 14 24

2 2 3 7 10

The waiting time for all the processes are given as

Waiting Time for P2 = 0 ms + (4 -2) ms = 2ms (P2 starts executing first and is

interrupted by P4 and has to wait till the completion of

P4 to get the next CPU slot)

Waiting Time for P4 = 0 ms (P4 starts executing by preempting P2 since the

execution time for completion of P4 (2ms) is less

than that of the Remaining time for execution

completion of P2 (Here it is 3ms))

Waiting Time for P3 = 7 ms (P3 starts executing after completing P4 and P2)

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 34

Waiting Time for P1 = 14 ms (P1 starts executing after completing P4, P2 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P4+P2+P3+P1)) / 4

= (0 + 2 + 7 + 14)/4 = 23/4

= 5.75 milliseconds

Turn Around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 2 ms

(Time spent in Ready Queue + Execution Time = (Execution Start Time – Arrival

Time) + Estimated Execution Time = (2-2) + 2)

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue +

Execution Time)

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue +

Execution Time)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (7+2+14+24)/4 = 47/4

= 11.75 milliseconds

Preemptive scheduling – Round Robin (RR)

Scheduling:

Execution Switch

Process 1

Execution Switch

• Each process in the ‘Ready’ queue is

executed for a pre-defined time slot.

Process 4 Process 2

• The execution starts with picking up the first

process in the ‘Ready’ queue. It is executed for a

pre-defined time

Execution Switch

Process 3

Execution Switch

Figure 11 Round Robin Scheduling

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 35

• When the pre-defined time elapses or the process completes (before the pre-

defined time slice), the next process in the ‘Ready’ queue is selected for

execution.

• This is repeated for all the processes in the ‘Ready’ queue

• Once each process in the ‘Ready’ queue is executed for the pre-defined time

period, the scheduler comes back and picks the first process in the ‘Ready’

queue again for execution.

• Round Robin scheduling is similar to the FCFS scheduling and the only

difference is that a time slice based preemption is added to switch the

execution between the processes in the ‘Ready’ queue

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 6, 4, 2 milliseconds respectively, enters the ready queue together

in the order P1, P2, P3. Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes) in RR algorithm with Time slice= 2ms.

Solution: The scheduler sorts the ‘Ready’ queue based on the FCFS policy and

picks up the first process P1 from the ‘Ready’ queue and executes it for the time

slice 2ms. When the time slice is expired, P1 is preempted and P2 is scheduled for

execution. The Time slice expires after 2ms of execution of P2. Now P2 is

preempted and P3 is picked up for execution. P3 completes its execution within the

time slice and the scheduler picks P1 again for execution for the next time slice.

This procedure is repeated till all the processes are serviced. The order in which the

processes are scheduled for execution is represented as

P1

P2

P3

P1

P2

P1

0 2 4 6 8 10 12

2 2 2 2 2 2

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 36

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (6-2) + (10-8) = 0+4+2= 6ms (P1 starts executing first

and waits for two time slices to get execution back and

again 1 time slice for getting CPU time)

Waiting Time for P2 = (2-0) + (8-4) = 2+4 = 6ms (P2 starts executing after P1

executes for 1 time slice and waits for two time

slices to get the CPU time)

Waiting Time for P3 = (4 -0) = 4ms (P3 starts executing after completing the first

time slices for P1 and P2 and completes its execution in a single time slice.)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P2+P3)) / 3

= (6+6+4)/3 = 16/3

= 5.33 milliseconds

Turn Around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 10 ms (-Do-)

Turn Around Time (TAT) for P3 = 6 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P1+P2+P3)) / 3

= (12+10+6)/3 = 28/3

= 9.33 milliseconds.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 37

Preemptive scheduling – Priority based Scheduling

• Same as that of the non-preemptive priority based scheduling except for the

switching of execution between tasks

• In preemptive priority based scheduling, any high priority process entering

the ‘Ready’ queue is immediately scheduled for execution whereas in the

non-preemptive scheduling any high priority process entering the ‘Ready’

queue is scheduled only after the currently executing process completes its

execution or only when it voluntarily releases the CPU

• The priority of a task/process in preemptive priority based scheduling is

indicated in the same way as that of the mechanisms adopted for non-

preemptive multitasking.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds and priorities 1, 3, 2 (0- highest priority, 3

lowest priority) respectively enters the ready queue together. A new process P4

with estimated completion time 6ms and priority 0 enters the ‘Ready’ queue after

5ms of start of execution of P1. Assume all the processes contain only CPU

operation and no I/O operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3)

available in the ‘Ready’ queue and the scheduler picks up the process with the

highest priority (In this example P1 with priority 1) for scheduling. Now process

P4 with estimated execution completion time 6ms and priority 0 enters the ‘Ready’

queue after 5ms of start of execution of P1. The processes are re-scheduled for

execution in the following order

P1

P4

P1

P3

P2

0 5 11 16

5 6 5 7

23 28

5

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 38

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (11-5) = 0+6 =6 ms (P1 starts executing first and gets

Preempted by P4 after 5ms and again gets the CPU time

after completion of P4)

Waiting Time for P4 = 0 ms (P4 starts executing immediately on entering the

‘Ready’ queue, by preempting P1)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (6 + 0 + 16 + 23)/4 = 45/4

= 11.25 milliseconds

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 6ms (Time spent in Ready Queue + Execution Time

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (5-5) + 6 = 0 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time= (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (16+6+23+28)/4 = 73/4

= 18.25 milliseconds

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 39

How to chose RTOS:

 The decision of an RTOS for an embedded design is very critical.

 A lot of factors need to be analyzed carefully before making a decision on

the selection of an RTOS.

These factors can be either

1. Functional

2. Non-functional requirements.

1. Functional Requirements:

1. Processor support:

It is not necessary that all RTOS’s support all kinds of processor

architectures.

It is essential to ensure the processor support by the RTOS

2. Memory Requirements:

• The RTOS requires ROM memory for holding the OS files and it is

normally stored in a non-volatile memory like FLASH.

OS also requires working memory RAM for loading the OS service.

Since embedded systems are memory constrained, it is essential to evaluate

the minimal RAM and ROM requirements for the OS under consideration.

3. Real-Time Capabilities:

 It is not mandatory that the OS for all embedded systems need to be Real-

Time and all embedded OS’s are ‘Real-Time’ in behavior.

 The Task/process scheduling policies plays an important role in the Real-

Time behavior of an OS.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 40

3. Kernel and Interrupt Latency:

 The kernel of the OS may disable interrupts while executing certain services

and it may lead to interrupt latency.

 For an embedded system whose response requirements are high, this latency

should be minimal.

5. Inter process Communication (IPC) and Task Synchronization: The

implementation of IPC and Synchronization is OS kernel dependent.

6. Modularization Support:

Most of the OS’s provide a bunch of features.

It is very useful if the OS supports modularization where in which the

developer can choose the essential modules and re-compile the OS image for

functioning.

7. Support for Networking and Communication:

The OS kernel may provide stack implementation and driver support for a

bunch of communication interfaces and networking.

Ensure that the OS under consideration provides support for all the

interfaces required by the embedded product.

8. Development Language Support:

Certain OS’s include the run time libraries required for running applications

written in languages like JAVA and C++.

The OS may include these components as built-in component, if not , check

the availability of the same from a third party.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 41

2. Non-Functional Requirements:

1. Custom Developed or Off the Shelf:

 It is possible to go for the complete development of an OS suiting the

embedded system needs or use an off the shelf, readily available OS.

It may be possible to build the required features by customizing an open

source OS.

The decision on which to select is purely dependent on the development

cost, licensing fees for the OS, development time and availability of skilled

resources.

2. Cost:

The total cost for developing or buying the OS and maintaining it in terms of

commercial product and custom build needs to be evaluated before taking a

decision on the selection of OS.

3. Development and Debugging tools Availability:

The availability of development and debugging tools is a critical decision

making factor in the selection of an OS for embedded design.

Certain OS’s may be superior in performance, but the availability of tools

for supporting the development may be limited.

4. Ease of Use:

How easy it is to use a commercial RTOS is another important feature that

needs to be considered in the RTOS selection.

5. After Sales:

 For a commercial embedded RTOS, after sales in the form of e-mail, on-call

services etc. for bug fixes, critical patch updates and support for production

issues etc. should be analyzed thoroughly.

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 42

User Level Applications/Tasks

App 1 App 2 App 3

Operating System Services

(Kernel)

Device Drivers

Hardware

Device Drivers:

• Device driver is a piece of software that acts as a bridge between the

operating system and the hardware

• The user applications talk to the OS kernel for all necessary information

exchange including communication with the hardware peripherals

• The architecture of the OS kernel will not allow direct device access from

the user application

• All the device related access should flow through the OS kernel and the OS

kernel routes it to the concerned hardware peripheral

• OS Provides interfaces in the form of Application Programming Interfaces

(APIs) for accessing the hardware

• The device driver abstracts the hardware from user applications

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 43

• Device drivers are responsible for initiating and managing the

communication with the hardware peripherals

• Drivers which comes as part of the Operating system image is known as

‘built-in drivers’ or ‘onboard’ drivers. Eg. NAND FLASH driver

• Drivers which needs to be installed on the fly for communicating with add-

on devices are known as ‘Installable drivers’

• For installable drivers, the driver is loaded on a need basis when the device

is present and it is unloaded when the device is removed/detached

• The ‘Device Manager service of the OS kernel is responsible for loading

and unloading the driver, managing the driver etc.

• The underlying implementation of device driver is OS kernel dependent

• The driver communicates with the kernel is dependent on the OS structure

and implementation.

• Device drivers can run on either user space or kernel space

• Device drivers which run in user space are known as user mode drivers and

the drivers which run in kernel space are known as kernel mode drivers

• User mode drivers are safer than kernel mode drivers

• If an error or exception occurs in a user mode driver, it won’t affect the

services of the kernel

• If an exception occurs in the kernel mode driver, it may lead to the kernel

crash

• The way how a device driver is written and how the interrupts are handled in

it are Operating system and target hardware specific.

• The device driver implements the following:

• Device (Hardware) Initialization and Interrupt configuration

 ES Unit-5 Notes

N Suresh, Assistant Professor, Dept. of ECE, MRCET Page 44

• Interrupt handling and processing

• Client interfacing (Interfacing with user applications)

• The basic Interrupt configuration involves the following.

• Set the interrupt type (Edge Triggered (Rising/Falling) or Level Triggered

(Low or High)), enable the interrupts and set the interrupt priorities.

• The processor identifies an interrupt through IRQ.

• IRQs are generated by the Interrupt Controller.

• Register an Interrupt Service Routine (ISR) with an Interrupt Request (IRQ).

• When an interrupt occurs, depending on its priority, it is serviced and the

corresponding ISR is invoked

• The processing part of an interrupt is handled in an ISR

• The whole interrupt processing can be done by the ISR itself or by invoking

an Interrupt Service Thread (IST)

• The IST performs interrupt processing on behalf of the ISR

• It is always advised to use an IST for interrupt processing, to make the ISR

compact and short

Reference Books:

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

2. Embedded System Design-Raj Kamal TMH

