
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT III –ARRAYS AND INTRODUCTION TO DATA STRUCTURES

TOPIC – STRUCTURE – Definition, Declaration, Initialization

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT 1

2

Introduction

 In C language, to store the integers, characters, and decimal values, we have int, char, float, or

double data types already defined(also known as the primitive data types).

 Also, we have some derived data types such as arrays and strings, to store similar types of data

types elements together.

 Still, the problem with arrays or strings is that they can only store variables of similar data

types, and the string can store only characters.

 What if we need to store two different data types together in C for many objects? Like, there is

a student variable that may have its name, class, section, etc.

 So if we want to store all of its information, We can create different variables for every

variable like a character array to store the name, an integer variable to store the class, and a

character variable to store the section.

 But this solution is a little messy, C provides us with a better neat and clean solution, i.e.,

Structure.
Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

3

Structure

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

 Structure in C is a User-Defined data type.

 It is used to bind two or more similar or different data types or data structures together into a single

type.

 The structure is created using the struct keyword, and a structure variable is created using the struct

keyword and the structure tag name.

 A data type created using structure in C can be treated as other primitive data types of C to define a

pointer for structure, pass structure as a function argument or a function can have structure as a return

type.

 For storing the details of a student, we can create a structure for a student that has the following data

types: a character array for storing name, an integer for storing roll number, and a character for storing

section, etc.

 Structures don't take up any space in the memory unless and until we define some variables for it.

When we define its variables, they take up some memory space which depends upon the type of the

data member and alignment

4

Why do we use Structures in C?

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

 Structure in C programming is very helpful in cases where we need to store similar data of

multiple entities. Let us understand the need for structures with a real-life example.

 Suppose you need to manage the record of books in a library. Now a book can have

properties like book_name, author_name, and genre. So, for any book you need three

variables to store its records. Now, there are two ways to achieve this goal.

 The first and the naive one is to create separate variables for each book. But creating so

many variables and assigning values to each of them is impractical. So what would be the

optimized and ideal approach? Here, comes the structure in the picture.

 We can define a structure where we can declare the data members of different data types

according to our needs. In this case, a structure named BOOK can be created having three

members book_name, author_name, and genre. Multiple variables of the type BOOK can

be created such as book1, book2, and so on (each will have its own copy of the three

members book_name, author_name, and genre).

5

How to Create a Structure?

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

To create a structure in C, the struct keyword is used followed by the tag name of the structure.

Then the body of the structure is defined, in which the required data members (primitive or user-

defined data types) are added.

Syntax: Example:

In the above syntax, the data_members can be of any data type like int, char, double, array or even any other

user-defined data type. The data_member_definition for the data types like character array, int, and double is

just a variable name like name, class, and roll_no. We have also declared a variable, i.e., student1 of the

Student structure.

6

Declaration of Structure Variables

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

A structure variable can either be declared with structure declaration or as a separate declaration

like basic types.

Method 1: Method 2:

If we declare the structure variables with the structure

definition, they work as global variables(means they can

be accessed in the whole program). If we need global

variables, we can declare variables with the structure

otherwise declaring it using the second approach is the

best way as it is easy to maintain or initialize variables.

7

Initialization of Structure Members

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

There are three ways to initialize structure members:

Using dot '.' operator

Using curly braces ‘{}’

Designated initializers

1. Using Dot '.' operator

Using the dot (.) operator, we can access any structure member and then initialize or assign its

value according to its data type.

In the above syntax first, we created a structure variable, then with the help of the dot operator accessed its

member to initialize them.

8

Dot operator - Example

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

1. In the given Example, we have created a structure,

Student and declared some members in it.

2. After that, we created an instance (variable or

object of structure Student) for it to access the

structure members using the dot operator and

assigned value to them.

3. Also, we used strcpy method of the string, this is

used to assign the value of one string to another.

4. In the end, we print the values of structure

members with the help of the dot operator.

9

Using Curly braces { }

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

If we want to initialize all the members during the structure variable declaration, we can declare using curly

braces. To initialize the data members by this method,

the comma-separated values should be provided

in the same order as the members declared in

the structure. Also, this method is beneficial to

use when we have to initialize all the data

members.

Example

10

Designated Initializers

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

Designated initialization is simple initialization of the structure members and is normally used when we want

to initialize only a few structure members, not all of them.

struct strucutre_name structure_varialbe = {.structure_member = value,.structure_member = value};

From syntax, we can see that we use curly braces, and in between them, with the help of the dot operator, data members are accessed and initialized.

There can be any number of structure members from a single structure that we can initialize, and all of them are separated using commas. But the most

important thing is that we can initialize members in any order. It is not compulsory to maintain the same order as the members are declared in the

structure.

11

Structure as Function Argument

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

While passing structure as a function argument, structure variables are treated the same as variables of

primitive data types.

The basic syntax for passing structure as a function argument is

12

Example

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

13

Array of Structure

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

As a structure in C is a user-defined data type, we can also create an

array of it, same as other data types. The syntax is

Input:

Output:

14

Structure Pointer

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

Like primitive types, we can have a pointer to a structure. If we have a pointer to structure, members are

accessed using arrow (->) operator.

15

Limitations of C Structures

Structures / Unit 3 / C & DS / Priyanga S / MCA / SNSCT

In C language, Structures provide a method for packing together data of different types. A Structure is a helpful

tool to handle a group of logically related data items. However, C structures have some limitations.

1. The C structure does not allow the struct data type to be treated like built-in data types.

2. We cannot use operators like +,- etc. on Structure variables.

3. No Data Hiding: C Structures do not permit data hiding. Structure members can be accessed by any function,

anywhere in the scope of the Structure

4. Functions inside Structure: C structures do not permit functions inside Structure

5. Static Members: C Structures cannot have static members inside their body

6. Access Modifiers: C Programming language does not support access modifiers. So they cannot be used in C

Structures.

7. Construction creation in Structure: Structures in C cannot have a constructor inside Structures.

