
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT III - ARRAYS AND INTRODUCTION TO DATA STRUCTURES

TOPIC – POINTERS

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT 1

2

Introduction

 Pointers in C are used to store the address of variables or a memory location. This variable can

be of any data type i.e, int, char, function, array, or any other pointer. The pointer of type void

is called Void pointer or Generic pointer. Void pointer can hold address of any type of

variable. The size of the pointer depends on the computer architecture like 16-bit, 32-bit, and

64-bit.

 A pointer is a variable whose value is the address of another variable of the same type. The

variable's value that the pointer points to is accessed by dereferencing using the * operator.

 We can access the address in our C program using the & operator.

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

3

Syntax of pointers

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

data_type * pointer_variable_name;

Example:

int *ptr_in; // pointer to an integer

char *ptr_ch ; // pointer to a character

double *ptr_dbl; // pointer to a double

float *ptr_fl; // pointer to a float

How to Use Pointers in C?

1. Declare a pointer variable.

2. A variable's address is assigned to a pointer using the & operator.

3. Use the address in the pointer variable to get the value by using the *(asterisk) operator, which returns the

variable's value at the address indicated by its argument.

In the given example, a variable int i = 4 is declared, the

address of variable i is 0x7766. A pointer variable int

*ptr=&i is declared. It contains the address of variable int i.

The value of *ptr will be value at address 0x7766; that value

would be 4.

4

Example
#include <stdio.h>

int main()

{

int x = 42; //variable declaration

int *ptr; //pointer variable declaration

ptr = &x; //store address of variable x in pointer

ptr

//printing the address

printf("Address stored in a variable ptr is: %x \n",

ptr);

//printing the value

printf("Value stored in a variable ptr is: %d \n",

*ptr);

return 0;

}

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

Explanation

1. In the given example, an int variable x is declared first.

2. The memory location where variable x is declared is

a7a9b45c. The value stored in x is 42.

3. The pointer variable ptr is declared using *(asterisk)

symbol, as mentioned that the data type of the pointer will

also be the same as the variable it will point to.

4. In this, ptr = &x, by using & operator, the address of x

variable is stored in ptr.

5. The value stored in x is accessed using * operator, *ptr

will give the value at location a7a9b45c, i.e., 42.

5

Types of Recursion

There are two types of recursion in the C language.

Direct Recursion

Indirect Recursion

1. Direct Recursion in C

Direct recursion in C occurs when a function calls itself directly from inside. Such functions are

also called direct recursive functions.

Following is the structure of direct recursion.

function_01()

{

//some code

function_01();

//some code

}

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

6

Flowchart of Recursion

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

In the following image, there is a recursive function inside which there is a

recursive call that calls the recursive function until the condition of the problem

is true. If the condition gets satisfied, then the condition is false, and the program

control goes for the remaining statements and stops the program.

How does Recursion Work?

 The recursive function or method has two main parts in its body, i.e., the base case and the recursive case.

 While the recursive method is executed, first, the base case is checked by the program.

 If it turns out true, the function returns and quits; otherwise, the recursive case is executed.

 Inside the recursive case, we have a recursive call that calls the function inside which it is present.

7

Example – Fibonacci Series

#include<stdio.h>
int fibonacci_01(int i)
{
if (i == 0)
{
return 0;
}

if (i == 1)
{
return 1;
}

return fibonacci_01(i - 1) + fibonacci_01(i - 2);
}
int main()
{

int i, n;
printf("Enter a digit for fibonacci series: ");
scanf("%d", & n);
for (i = 0; i < n; i++)
{
printf(" %d ", fibonacci_01(i));

}
return 0;

}

1. In the given C program, we have declared a

function named fibonacci_01().

2. It takes an integer i as input and returns the ith

element of the Fibonacci series.

3. At first, the main() function will be executed

where we have taken two variables i and n.

4. We will take input from the user that will be

stored in n, and the for loop will execute till n

iteration where with each iteration, it will pass

the parameter to fibonacci_01() function where

the logic for the Fibonacci series is written.

5. Now inside fibonacci_01() function, we have

nested if-else.

6. If input = 0, it will return 0, and if the input = 1,

it will return 1. These are the base cases for the

Fibonacci function.

7. If the value of i is greater than 1, then

fibonacci(i) will return fibonacci_01 (i - 1) +

fibonacci_01 (i -2) recursively, and this recursion

will be computed till the base condition.

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

8

Indirect Recursion

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT

Indirect recursion in C occurs when a function calls another function and if this function calls the first

function again. Such functions are also called indirect recursive functions.

Following is the structure of indirect recursion.

function_01()

{

//some code

function_02();

}

function_02()

{

//some code

function_01();

}

In the indirect recursion structure the function_01() executes

and calls function_02(). After calling now, function_02

executes where inside it there is a call for function_01, which

is the first calling function.

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT 9

Difference between Recursion & Iteration

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT 10

Advantages of Recursion

 The code becomes shorter and reduces the unnecessary calling to functions.

 Useful for solving formula-based problems and complex algorithms.

 Useful in Graph and Tree traversal as they are inherently recursive.

 Recursion helps to divide the problem into sub-problems and then solve them, essentially

divide and conquer.

Disadvantages of Recursion

 The code becomes hard to understand and analyze.

 A lot of memory is used to hold the copies of recursive functions in the memory.

 Time and Space complexity is increased.

 Recursion is generally slower than iteration.

Pointers / Unit 3 / C&DS / Priyanga S / MCA / SNSCT 11

Conclusion

 There are two types of recursion in the C language.

 The first is Direct recursion and Indirect recursion.

 The Direct recursion in C occurs when a function calls itself directly from inside.

 Indirect recursion occurs when a function calls another function, and then that function calls the first

function again.

 The function call to itself is a recursive call, and the function will become a recursive function.

 The stack is maintained in the memory to store the recursive calls and all the variables with the value

passed in them.

