Fundamentals of the Analysis of Algorithm Efficiency

- Analysis Framework
- Asymptotic Notations and its properties
- Mathematical analysis of Recursive algorithms

Asymptotic Notations and its properties

- Analysis framework - Efficiency - order of growth
- Order of growth - change in order of input size
- Study of performance changes of algorithm with change in order of input \rightarrow Asymptotic Analysis
- Compare and Rank order of growth $\rightarrow 3$ Notations
- Mathematical tool to represent the time complexity of algorithm for Asymptotic Analysis is Asymptotic Notation
- Notations
- Big O Notation (Worst-case efficiency)
- Big Ω Notation (Best-case efficiency)
- Big Θ Notation (Average-case efficiency)

Big O Notation (Worst-case efficiency)

- Upper bound of the running time of an algorithm
- $\mathrm{O}(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n})$: there exist positive constants c and n 0 such that $0 \leq \mathrm{f}(\mathrm{n}) \leq \operatorname{cg}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n} 0\}$
- $\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$

Big O Notation (Worst-case efficiency)

n	$\mathrm{f}(\mathrm{n})=100 \mathrm{n}+300$	$\mathrm{~g}(\mathrm{n})=6 \mathrm{n}^{2}$
1	400	6
2	500	24
3	600	54
4	700	96
5	800	150
.		
.	1300	600
10		
.	1800	1350
15	2300	2400
20	2400	2646
21	2500	2904
22	2600 eresign and Analvsis of Algorithm $^{\text {A.Indhuja }}$	3174
23		
5/28/2024		

Big O Notation (Worst-case efficiency) - Example

What is n_{0} here?

Big Ω Notation (Best-case efficiency)

- lower bound of the running time of the algorithm
- $\Omega(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n})\right.$: there exist positive constants c and n_{0} such that $0 \leq \operatorname{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ for all $\left.\mathrm{n} \geq \mathrm{n}_{0}\right\}$

Big Θ Notation (Average-case efficiency)

- Encloses the function from above and below
- upper and the lower bound of the running time of algorithm
- $\Theta(g(n))=\{f(n)$: there exist positive constants $c 1, c 2$ and $n 0$ such that $0 \leq \mathrm{c} 1 \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c} 2 \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n} 0\}$

Design and Analysis of Algorithm A.Indhuja

