Fundamentals of the Analysis of Algorithm Efficiency

 Analysis Framework

« Asymptotic Notations and Its properties

« Mathematical analysis of Non - Recursive algorithms
« Mathematical analysis of Recursive algorithms

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Mathematical analysis of Recursive algorithms

General plan for Analyzing the time efficiency of Recursive algorithm
1. Decide on a parameter (or parameters) indicating an input’s size.
2. ldentify the algorithm’s basic operation.

3. Check whether the number of times the basic operation Iis
executed can vary on different inputs of the same size; if it can, the
worst-case, average-case, and best-case efficiencies must be
Investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition,
for the number of times the basic operation iIs executed.

5. Solve the recurrence or, at least, ascertain the order of growth of
Its solution.

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Mathematical analysis of Recursive algorithms

* Recursive Function — function that calls itself
« Example 1: Factorial of a given number

nl=1..... n—1D.n=(n-1)!*n forn>1

F(nN=FMn—-1).nforn>0,

ALGORITHM Fin)
Computes a! recursively
(Input: A noanegative mteger n
Outpat: The value of a!
if =0 retarm |
else return Fin — 1) #n

Design and Analysis of Algorithm -

>/28/2024 A.Indhuja

Example 1: Factorial of a given number

 F(nN)=F(n—1).nforn>0
« No.of multiplications (Recurrence relation)

Min)=Min—-1) + | forn > 0.
to compute o multiply
Fin-1) Fia-1; by a

 Initial condition — sequence
If n=0 return 1
n=0 -2 no multiplications are done

MO =0

the calls stop whenn =0 T T no multiplications whaen n =0

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Example 1: Factorial of a given number

* F(n)=F(n-1). N

« FO)=1

 M(n) = M(n-1) +1
= [M(n-2) +1] + 1 = M(n-2) +2
= [M(n-3)+2] +1=M(n-3) +3

M(n) = M(n-i) + i

If 1=n,

M(n) = M(n-n)+n
=M(0) +n
=n

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Example 2: Towers of Hanoi

Problem statement : Given n disks of different sizes and 3 rods. Initially
all the disks are in the 15 rod, largest on the bottom and smallest on the
top.

The goal is to move all the disks to 3" rod with the help of 2" rod if
essential.

Condition 1: Move one disk at a time

Condition 2: place smaller disk on larger disk

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Setting up the Recurrence Relation

move (2, A", 'B’, 'C)
move (3. A, 'C',.'B)

Pl o) 712/825

Design and Analysis of Algorithm -

>/28/2024 A.Indhuja

Setting up the Recurrence Relation

move (2, 'A’, ‘B, 'C) J
move (3, ‘A, 'C’,'B) Print *"Moving disc n from Ato C* J

move (2. 'B’, 'C",'A)

Design and Analysis of Algorithm -

>/28/2024 A.Indhuja

Example 2: Towers of Hanol

« Initial condition M(1) =1
(if there are only one disk we can move to 3" rod with one move)
« M(n)=M(n-1) +1+ M(n-1) for n>1. Backward Substitution
M(n)=2M(n—1) +1

=2[2M(n—2) + 1]+ 1=2°M(n —2) +2 + 1

=22[2M(n—3) + 1]+ 2+ 1=23M(n — 3) + 22+ 2 + 1.
e 22M(n—4)+23+22+2+1
e M(n)=2Mn—i)+2"14+22+ +2+1=2M(n—i)+2'—-1.
o [24=16][23+22+21+1=8+4+2+1 = 15]
 Initial condition is n=1, so i= upper bound - lower bound = i=n-1
e« M(nN=2"M(h—-(n—-1))+2m1-1

=2"IMQ) + 21 = 1=2""1 + 21— 1=2n — 1,

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Analysis of problems discussed

Problem Size of the Basic operation | Count of basic | Efficiency class
problem operation
Greatest element in | n Comparison O(n) Worst /Best
list inside loop
A[i]>maxval
Matrix Order of Multiplication | O(n3) Worst
Muliplication matrix
Element n Comparison O(n?) Worst
Uniqueness inside for loop
Problem
No. of bits in a n Comparison O(log,n) Worst/Best/Avg
decimal number
Factorial of a given | n Multiplication | O(n) Worst
number
Towers of hanoi n Movements 0(2"-1) Worst

5/28/2024

Design and Analysis of Algorithm -

A.Indhuja

10

