Fundamentals of the Analysis of Algorithm Efficiency

Analysis Framework

Asymptotic Notations and Its properties
Mathematical analysis of Non - Recursive algorithms
heal analysis of Recursive algorithms

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Mathematical analysis of Non - Recursive algorithms

« Analysis framework — systematic — analyze the time efficiency of
non-recursive algorithm

« Example 1: Finding the largest value in a list of n numbers

ALGORITHM MaxElement(A[D..n —1])

/Determines the value of the largest element in a given array

/[Input: An array A[0..n — 1] of real numbers

[[Output: The value of the largest element in A

maxval < A[0]

fori < 1ton—1ldo

if Ali] > maxval Ali] = A[1] Second max

maxval < Ali] \L

return maxval

-f 2 3 8 6 6 75 38 3

maxval
Max

Design and Analysis of Algorithm -

>/28/2024 A.Indhuja

Example 1: Finding the largest value in a list of n numbers

maxval < A|0]
fori < lton —1do
if Ali] > maxval
maxval < Alil
return maxval

What is the problem size n

What is the basic operation Comparison in for loop

Count of basic operation 1
Cin)=>%i-;1=n-1¢0O()

4 | Depends on what efficiency? Worst/best/average

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

General Plan for Analyzing the Time Efficiency of
Non recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. ldentify the algorithm’s basic operation. (As a rule, it is located in the inner- most
loop.)

3. Check whether the number of times the basic operation is executed depends
only on the size of an input. If it also depends on some additional property, the
worst-case, average-case, and, if necessary, best-case efficiencies have to be
investigated separately.

4. Set up a sum expressing the number of times the algorithm’s basic operation is
executed.

5. Using standard formulas and rules of sum manipulation, either find a closed-
form formula for the count or, at the very least, establish its order of growth.

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Formula for Sum Manipulation

icaizciai, (RI)
i=l i=l

u i “
Z(afib")‘:za‘izbﬁ (RZ)
i=l i=l i=l

two summation formulas

u
Y 1=u—1+1 where! <u aresome lower and upper integer limits, (S1)

i=l
n n
nn+1) 1> 3 :
. .- ls e e L A 2 -v.’
E :_E i=14+2+ +n= 5 ~2n € @(n). (S2)

i=0 i=1

Design and Analysis of Algorithm -
>/28/2024 A.Indhuja

Example 2: Element Uniqueness Problem

1st 2nd 3rd 4th 5th 6th 7th
A[O] A[1] A[2] A[3] Al4] A[5] Al6]

Here: n=7, n-1 = 6, n-2=5

ALGORITHM Uniquellements(A[O..n — 1])

/Determines whether all the elements in a given array are distinct
/Mnput: An array A[O..n — 1]
/Output: Returns “true™ if all the elements in A are distinct
/f and “false™ otherwise
fori —0ton —2do

for j —i+1ton—1do

if Ali]= A[j]return false

return true

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

Example 2: Element Uniqueness Problem

What is the problem size n
What is the basic operation If statement (comparison)
Count of basic operation n-2 a-l

>, 2. 1

i=0 j=i+l

Depends on what efficiency? Worst/best/average
Worst case — all the elements are different — all sequence of for loop
Best case — 15t and 2" element are same — comes out of loop

Summation 2 nl n2 .
'I'-._____._,,I'.-,-|=Z "!l_' l =I"!l_|:|'|-I — '_: _”_I:'l' |=I"!'_|_I1 — 1=
—ZI’F—| "!-_'r (m— ||":-_' _IF—-I'—_:
5/28/2024 Design and Analysis of Algorithm - .

A.Indhuja

Example 3: Sum of n numbers

Program:

count = 0;

for (I=1;i<=n;i++)
count=count+i;

return count;

Example:

n =5. count =0

I=1 2>count=0+1=1

1=2 2> count=1+2=3

1=3 2> count=3+3 =6

1=4 - count =6+4 =10

1I=5 2>count=10+5=15

5/28/2024

Analysis of sum of n numbers:

1.

2.
3.
4

Problem size?
Basic Operation ?
Count of basic operation ?

Worst / Best / Average case
efficiency ?

Design and Analysis of Algorithm -
A.Indhuja

Example 4: to find the no of binary digits in a binary

pE 24 23 22 21 20
32 16 8 4 2 1
1
1 0
1 1
1 0 0 0 0

ALGORITHM Rinary()

[Mnput: A positive deamal integer a
{Output: The number of binary digits in a's binary representation

count +— 1

while » == | do
count «— counst + 1
n « |nf2]

retmm cound

5/28/2024

Design and Analysis of Algorithm -

A.Indhuja

representation of a positive decimal integer

15

16

Number | Binary
representation

0000

0001

0010

0011

0100

0101

0110

1111

10000

Iteration | nvalue Count

Initial 2 1

1st 2
n=n/2=1

Iteration | nvalue Count

Initial 4 1

1st 2
n=4/2 =2

2nd 3
n=2/2=1

5/28/2024

Iteration | nvalue Count
Initial 3 1
1st 2
n=n/2=1.5
Iteration | nvalue Count
Initial 8 1
15t 2
n=8/2=4
2nd 3
n=4/2=2
3rd 4
n=2/2=1

A.Indhuja

Design and Analysis of Algorithm -

10

Example 4: Analysis

1 | What is the problem size

2 | What is the basic operation

Comparison in while loop

3 | Count of basic operation

C(n) = Xo,9*1 1

Depends on what efficiency? Worst/best/average

5/28/2024

Design and Analysis of Algorithm -
A.Indhuja

11

Example 5: Matrix Multiplication

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1],
B[0.n—1,0.n—1])

//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two n * n matrices 4 and B

//Output: Matrix C =AB

fori« Oton—1do

forj<—0Oton—1do

Cli,j] < 0.0

fork<—Oton—1do

Cli,j]1< Cli,j]+ Ali k] * B[k, j]

return C

Design and Analysis of Algorithm -

5/28/2024 A.Indhuja

12

Example 5: Matrix Multiplication Analysis

1 | What is the problem size Order of matrix
2 | What is the basic operation Multiplication and addition
3 | Count of basic operation nlnlal
Min)= ZEIZI L

4 | Depends on what efficiency? Worst/best/average
5 | Runningtime T(n) = Cop C(n)

=Cm M(n) + CaA(n)

=Cmn3 +Can?

=(Cm+Cn)n 3

5/28/2024 Design and Analysis of Algorithm -

A.Indhuja

13

Write the program for the following output and
do the analysis process

1

12
123
1234
12345

Design and Analysis of Algorithm -
>/28/2024 A.Indhuja

14

