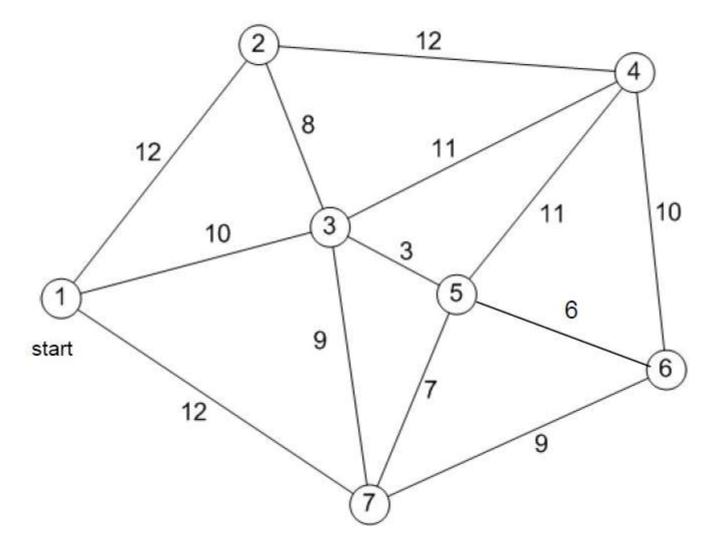
UNIT II – Brute Force and Divide and Conquer

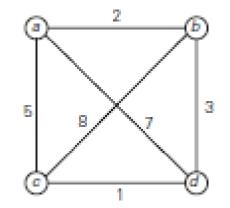
• Brute Force Design Technique

- Selection Sort
- Bubble Sort
- Sequential Search
- Closest pair and Convex hull problem
- Travelling Salesman problem
 Knapsack problem
 Exhaustive Search
- Assignment problem

Exhaustive search – Travelling salesman problem

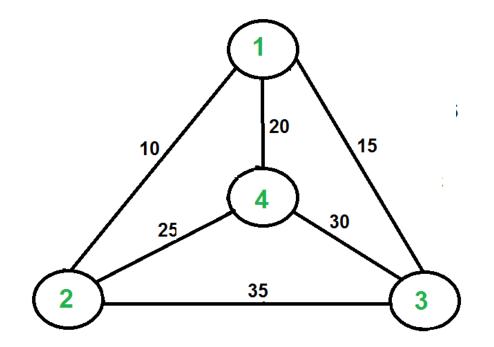

- Exhaustive search
 - Brute force approach -combinatorial problem
 - Permutation (all the possibilities best solution)
- Travelling salesman problem

Find the shortest tour through n cities such that all the cities are visited exactly once before returning to the city where it started.


- ✓ Modeling Graphs → vertices (city) and edge (distance)
- $\checkmark\,$ To find the shortest hamilton circuit
- ✓ Hamilton circuit
 - ✓ graph cycle visits each vertex exactly once without repeats

✓ Ex: Given n vertex → $v_0, v_1, v_2, \dots, v_{n-1}, v_0$

Travelling salesman problem



Travelling salesman problem - Example

Tour between cities starting with 'a'	Total weight
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	2+8+1+7=18
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	2+3+1+5=11
$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	5+8+3+7=23
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	5+1+3+2=11
$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$	7+1+8+2=18
$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	7+3+8+5=23

Travelling salesman problem - Example

Tour between cities starting with '1'	Total weight
1→2→4→3→1	10+25+30+15=80
$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$	10+35+30+20=95
1→4→2→3→1	20+25+35+15=95
$1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$	20+30+35+10=95
$1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1$	15+30+25+10=80
$1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$	15+35+25+20=95