Unit II - Divide and Conquer

- Merge sort
- Quick sort
- Binary search
- Multiplication of large Integers
- Strassen's Matrix Multiplication

Divide and Conquer Design Technique

Divide and Conquer Design Technique

1. A problem is divided into several sub problems of the same type, ideally of about equal size.
2. The sub problems are solved (typically recursively, though sometimes a different algorithm is employed, especially when sub problems become small enough).
3. If necessary, the solutions to the sub problems are combined to get a solution to the original problem.
Algorithm for Divide and Conquer:

DAC(P)

if $\operatorname{small}(\mathbf{P})$
$\mathbf{S}(\mathbf{P})$
else
Divide P into P1,P2.....Pn
Apply DAC(P1), DAC(P2).....DAC(Pn)
S(DAC(P1), DAC(P2).....DAC(Pn))

Divide and Conquer Design Technique

Recurrence Relation

$\mathrm{T}(n)=\mathrm{a} \mathrm{T}(n / \mathrm{b})+\mathrm{f}(n)$
here
$\mathrm{T}(\mathrm{n} / \mathrm{b})$ - sub problem
$\mathrm{f}(n)$ - time spent for dividing n into n / b and combing their solutions

Masters Theorem

$\mathrm{T}(n)=\mathrm{a} \mathrm{T}(n / \mathrm{b})+\mathrm{f}(n) \quad \mathrm{a}>=1, \mathrm{~b}>1, \mathrm{f}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}} \log ^{\mathrm{p}} \mathrm{n}\right)$
Find values: $1 . \log _{\mathrm{b}} \mathrm{a}$
2. k

Case 1 : if $\log _{b} \mathrm{a}>\mathrm{k}$, then $\mathrm{O}\left(\mathrm{n}^{\log ^{\mathrm{a}}}\right)$
Case 2: if $\log _{b} a=k$, then $O\left(n^{k} \log ^{p} n \log n\right)$
Case 3: if $\log _{\mathrm{b}} \mathrm{a}<\mathrm{k}$, then $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}} \log ^{\mathrm{P}} \mathrm{n}\right)$

- Masters Theorem - Example
- $\mathrm{T}(n)=\mathrm{a} \mathrm{T}(n / \mathrm{b})+\mathrm{f}(n), \mathrm{f}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}} \log ^{\mathrm{p}} \mathrm{n}\right)$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+1$
- Here $\mathrm{a}=2, \mathrm{~b}=2, \mathrm{f}(\mathrm{n})=1=\mathrm{O}(1)=\mathrm{O}\left(\mathrm{n}^{0} \log ^{0} \mathrm{n}\right)$
- From this $k=0, p=0, a=2, b=2$

Find values: $1 . \log _{\mathrm{b}} \mathrm{a}=\log _{2} 2=1$

$$
\text { 2. } \mathrm{k}=0
$$

Case 1: $\log _{\mathrm{b}} \mathrm{a}>\mathrm{k} \rightarrow 1>0$
$\mathrm{O}\left(\mathrm{n}^{\log ^{\mathrm{a}}} \mathrm{b}^{\mathrm{a}}\right)$
$\mathrm{O}\left(\mathrm{n}^{1}\right)$

MERGE SORT - Example

- Link
- Example

MERGE SORT - Algorithm

```
ALGORITHM Mergesort(A[0..n-1])
\(\longrightarrow \mathrm{T}(\mathrm{n})\)
//Sorts array A[0..n-1] by recursive mergesort
//Input: An array \(A[0 . . n-1]\) of orderable elements
//Output: Array \(A[0 . . n-1]\) sorted in nondecreasing order
if \(n>1\)
    copy \(A[0 . .\lfloor n / 2\rfloor-1]\) to \(B[0 . .\lfloor n / 2\rfloor-1]\)
    copy \(A[\lfloor n / 2] . n-1]\) to \(C[0 . .+n / 2]-1]\)
    Mergesort \((B[0 . .[n / 2]-1]) \longrightarrow T(n / 2)\)
    Mergesort \((C[0 . .[n / 2]-1]) \longrightarrow T(n / 2)\)
    \(\operatorname{Merge}(B, C, A) \quad / /\) see below
n
```

ALGORITHM $\operatorname{Merge}(B[0 . . p-1], C[0 . q-1], A[0 \ldots p+q-1])$
//Merges two sorted arrays into one sorted array
$/ /$ Input: Arrays $B[0 \ldots p-1]$ and $C[0 . . q-1]$ both sorted
$/ /$ Output: Sorted array $A[0 . . p+q-1]$ of the elements of B and C
$i \leftarrow 0 ; j \leftarrow 0 ; k \leftarrow 0$
while $i<p$ and $j<q$ do
if $B[i] \leq C[j]$
$A[k] \leftarrow B[i] ; i \leftarrow i+1$
else $A[k] \leftarrow C[j] ; j \leftarrow j+1$
$k \leftarrow k+1$
if $i=p$
copy $C[j . q-1]$ to $A[k . . p+q-1]$
else copy $B[i . . p-1]$ to $A[k . . p+q-1]$

MERGE SORT - Analysis

- $T(n)=1$
$\mathrm{n}=1$
- $\quad=2 T(n / 2)+n \quad n>1$
- Here $\mathrm{a}=\mathrm{b}=2, \mathrm{f}(\mathrm{n})=\mathrm{n}$
- 2 values
$-\log _{\mathrm{b}} \mathrm{a}=\log _{2} 2=1$
- $K \rightarrow n^{k}=n^{1}$
- $\log _{\mathrm{b}} \mathrm{a}=\mathrm{k} \rightarrow 1=1 \rightarrow$ case $2 \rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})$

