Unit II - Divide and Conquer

- Merge sort
- Quick sort
- Binary search
- Multiplication of large Integers
- Strassen's Matrix Multiplication
- Decrease the no. of multiplications at the expense of a slight increase in no. of additions

Multiplication of large Integer ${ }^{\prime}$ S
$\left.\begin{array}{llll}\text { Example } & 14 & n=2 \\ & a_{0} a_{1} & \text { bo by } & n^{2}\end{array}\right]$ Multi

$$
23=\left(2 \times 10^{1}\right)+\left(3 \times 10^{0}\right)
$$

$$
14=\left(1 * 10^{\prime}\right)+\left(4 \times 10^{\circ}\right)
$$

$23 * 14$

$$
\left[\left(2 * 10^{1}\right)+\left(3 * 10^{\circ}\right)\right] *\left[\left(1 * 10^{1}\right)+\left(4 * 10^{\circ}\right)\right]
$$

$$
\begin{array}{rl}
(2 * 4)+(3 * 1) & =(2+3) *(4 * 1)-2 * 1- \\
a_{0} b_{1} a_{1} b_{0} & 3 * 4 \\
& =5 * 5-(2+12) \\
& =25-14=11 / 1
\end{array}
$$

Multiplication of large Integers

$$
\begin{aligned}
& c=a * b=c_{2} 10^{2}+c_{1} 10^{1}+c_{0} \\
& c_{2}=2 * 1 \Rightarrow a_{0} * b_{0} \\
& c_{0}=3 * 4 \Rightarrow\left(a_{1} * b_{1}\right. \\
& c_{1}=\left(a_{0}+a_{1}\right) *\left(b_{0}+b_{1}\right)-\left(c_{2}+c_{0}\right) \\
& c=a * b=c_{2} 10^{n+}+c_{1} 10^{4 / 2}+c_{0}
\end{aligned}
$$

$$
\begin{aligned}
& M(n)=3 M(n / 2) \quad \text { for } n \geqslant T^{D A E} \\
& M(1)=1 \\
& n=2^{k} \Rightarrow k=\log _{2} n \\
& M\left(2^{k}\right)=3 M\left(2^{k} / 2^{1}\right) \\
& =3 M\left(2^{k-1}\right) \\
& =3\left[3 M\left(2^{k-2}\right)\right] \\
& =3^{2} M\left(2^{k-2}\right) \\
& =3^{3} m\left(2^{k-3}\right) \\
& =3^{4} M\left(2^{k-4}\right) \\
& =3^{5} M\left(2^{k-5}\right) \Rightarrow 3^{i} M\left(2^{k-i}\right) \\
& \Rightarrow 3^{k} M\left(2^{k-k}\right) \\
& \Rightarrow 3^{k} M\left(2^{0}\right) \\
& \Rightarrow 3^{k} M(1) \\
& a^{\log _{b} c}=c^{\log _{b} a} \\
& \begin{array}{l}
\Rightarrow 3^{k} / / \\
\Rightarrow 3^{\log _{2} n}
\end{array} \\
& \Rightarrow n^{\log _{2} 3} \\
& \Rightarrow n^{1.585}
\end{aligned}
$$

Multiplication of large Integers

- Example;
- 1234*1234
- $123456 * 654321$

Strassen's Matrix Multiplication

- Strassen - 1969

$$
\begin{aligned}
{\left[\begin{array}{cc}
c_{00} & c_{01} \\
c_{10} & c_{11}
\end{array}\right] } & =\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right] *\left[\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right] \\
& =\left[\begin{array}{cc}
m_{1}+m_{4}-m_{5}+m_{7} & m_{3}+m_{5} \\
m_{2}+m_{4} & m_{1}+m_{3}-m_{2}+m_{6}
\end{array}\right], \\
m_{1} & =\left(a_{00}+a_{11}\right) *\left(b_{00}+b_{11}\right), \\
m_{2} & =\left(a_{10}+a_{11}\right) * b_{00} \\
m_{3} & =a_{00} *\left(b_{01}-b_{11}\right), \\
m_{4} & =a_{11} *\left(b_{10}-b_{00}\right), \\
m_{5} & =\left(a_{00}+a_{01}\right) * b_{11}, \\
m_{6} & =\left(a_{10}-a_{00}\right) *\left(b_{00}+b_{01}\right)+ \\
m_{7} & =\left(a_{01}-a_{11}\right) *\left(b_{10}+b_{11}\right) .
\end{aligned}
$$

7 Multiplications \& 18 additions

Strassen's Matrix Multiplication - Analysis

Since $n=2^{k}$,

$$
\begin{aligned}
M\left(2^{k}\right) & =7 M\left(2^{k-1}\right)=7\left[7 M\left(2^{k-2}\right)\right]=7^{2} M\left(2^{k-2}\right)=\cdots \\
& =7^{i} M\left(2^{k-i}\right) \cdots=7^{k} M\left(2^{k-k}\right)=7^{k} .
\end{aligned}
$$

Since $k=\log _{2} n$,

$$
M(n)=7^{\log _{2} n}=n^{\log _{2} 7} \approx n^{2.807}+
$$

